Entries by

Brain-Machine Interfaces

Epilepsy is a common neurological disorder affecting over 50 million people in the world. Approximately one third of epileptic patients exhibit seizures that are not controlled by medication. Despite substantial innovations in anti-seizure drug therapy, the proportion of patients with uncontrolled epilepsy has not changed, emphasizing the need for new treatment strategies. The development of new devices capable of performing a rapid and reliable seizure detection followed by brain stimulation holds great promises for improving the quality of life of millions of people with epileptic seizures worldwide.

Wideband Injection Locking and Quadrature Phase Generation

Injection-locked-oscillators (ILOs) have been used extensively because of their simple implementation and instantaneous locking characteristics. However, their application is hindered by their limited locking range compared with alternative techniques such as PLLs. In this project, PLL and injection locking elements are combined symbiotically to achieve wide locking range while retaining the simplicity of the latter.

Low-power First-order Frequency Synthesizer

Clock multipliers play a key role in design of high-speed electrical and optical links. As the aggregate bandwidth requirement for chip-to-chip interconnects grows, their respective frequency of operation increases. In this project a first order frequency synthesizer is presented that is suitable for high-speed on-chip clock generation. In this architecture the rising edge of the reference clock is directly injected to the output clock, resetting jitter accumulation similar to an MDLL.