Epilepsy is a common neurological disorder affecting over 50 million people in the world. Approximately one third of epileptic patients exhibit seizures that are not controlled by medication. Despite substantial innovations in anti-seizure drug therapy, the proportion of patients with uncontrolled epilepsy has not changed, emphasizing the need for new treatment strategies. The development of new devices capable of performing a rapid and reliable seizure detection followed by brain stimulation holds great promises for improving the quality of life of millions of people with epileptic seizures worldwide.
As signals in the physical world are ultimately analog in nature, analog-to-digital converters (ADCs) are a key enabling technology for this trend. However, ADC speed and resolution have not kept pace with the stunning improvements in computing power, thus creating a bottleneck which limits the performance and application space of advanced signal processing techniques in physical systems.
Compressive Sensing Platform for Cortical Implants
/0 Comments/in Research, Sub-Nyquist Signal Acquisition Systems /by awp-adminEpilepsy is a common neurological disorder affecting over 50 million people in the world. Approximately one third of epileptic patients exhibit seizures that are not controlled by medication. Despite substantial innovations in anti-seizure drug therapy, the proportion of patients with uncontrolled epilepsy has not changed, emphasizing the need for new treatment strategies. The development of new devices capable of performing a rapid and reliable seizure detection followed by brain stimulation holds great promises for improving the quality of life of millions of people with epileptic seizures worldwide.
CMOS Receiver for Compressive Sensing
/0 Comments/in Research, Sub-Nyquist Signal Acquisition Systems /by awp-adminAs signals in the physical world are ultimately analog in nature, analog-to-digital converters (ADCs) are a key enabling technology for this trend. However, ADC speed and resolution have not kept pace with the stunning improvements in computing power, thus creating a bottleneck which limits the performance and application space of advanced signal processing techniques in physical systems.