Brain-Machine Interfaces

Team Members: Benyamin A. Haghi, Sahil Shah, Spencer Kellis from Richard Andersen’s lab.

In the United States, there are about 17,700 new cases per year of Spinal Cord Injury (SCI). SCI results in a partial or total loss of motor function. Brain-Machine Interfaces (BMI) have the potential to increase independence and improve quality of life in SCI patients by reading out neural signals and mapping them onto control signals for assistive devices.

BMI systems serve as an interface between the cortex and peripheral devices and hence they need to be robust over time in the face of different sources of variability. For example, electric potentials in the cortex have small amplitudes and are susceptible to noise, and electrical and mechanical properties of implanted microelectrodes change over time. Neuronal populations may also change over time. Hence, the decoders designed for a BMI system should be able to generalize across these sources of variability to accurately infer movement commands from changing neural signals.

In addition, almost all existing BMI systems run on a desktop computer consuming several watts of power (a typical desktop consumes 60 to 300 watts of power). Such a system is not optimized for real-time processing outside of a clinical setting. Hence, the need for a robust and efficient learning system implemented on an ASIC. Moreover, the algorithms used for such a BMI system have assumed a linear relation between inputs and outputs (e.g., Kalman filters or Wiener filters). In recent years, due to progress made in machine learning and neural networks, there has been an increased interest in adopting these novel techniques for BMI applications. With enough training data, these powerful machine learning algorithms could generalize over large variations in the recorded data.

Our group in collaboration with Richard Andersen’s Lab propose to develop a BMI system which efficiently maps neuronal signal to kinematics in a resource-constrained environment. Figure 1 shows a top-level block diagram of our BMI system.

In our recent work [4] we use neural and behavioral data collected during the open-loop phase of a 2D center-out brain-control task. In this phase of the task, a cursor moves under computer control, with a minimum-jerk velocity profile, from the center of a computer screen to one of eight different target locations arranged uniformly around a unit circle, while the subject uses motor imagery to imagine controlling the cursor. Data is collected in three-minute blocks, each block consisting of 53 trials, with a pseudorandom uniform distribution of targets across trials.

This data is used to train several neural networks. Specifically, a Recurrent Neural Network (RNN), which have shown promising results for sequential data were used. An RNN is composed of feedforward network as well as a feedback network, meaning that all previous outputs are integrated to predict the next time-step RNNs also use previous time step’s input data when computing a new prediction.

While these algorithms are powerful in their capacity to capture complex relationships, they currently require power-hungry computational resources to operate. Part of making BMI systems clinically relevant is to design and develop size- and power-efficient hardware for decoding kinematics such that these systems can be implanted or worn on the body. One of the directions being investigated involves exploring such novel algorithms and energy-efficient hardware.




  1. B. A. Haghi, S. Kellis, S. Shah, M. Ashok, L. Bashford, D. Kramer, B. Lee, Ch. Liu, R. A. Andersen, and A. Emami, “ Deep Multi-State Dynamic Recurrent Neural Networks Operating on Wavelet Based Neural Features for Robust Brain Machine Interfaces”2019 Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019), 2019, Vancouver, Canada.
    [ PDF ]
  2. B. Haghi, S. Kellis, M. Ashok, S. Shah, L. Bashford, D. Kramer, B. Lee, C. Liu, R. Andersen, A. Emami, “ Deep multi-state dynamic recurrent neural networks for robust brain-machine interfaces”Program No. 406.04. 2019 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2019. Online.
    [ Abstract ]
  3. Benyamin Haghi, Spencer Kellis, Luke Bashford, Sahil Shah, Daniel Kramer, Brian Lee, Charles Liu, Richard Andersen and Azita Emami “Robust Learning Algorithms for Brain Machine Interfaces” IEEE Brain Initiative Workshop on Advanced NeuroTechnologies 2018.
  4. Sahil Shah, Benyamin Haghi, Spencer Kellis, Luke Bashford, Daniel Kramer, Brian Lee, Charles Liu, Richard Andersen and Azita Emami “Decoding Kinematics from Human Parietal Cortex using Neural Networks” International IEEE EMBS Conference on Neural Engineering (Accepted)

Location-Broadcasting Chips

We present an alternative approach to microscale device localization based on concepts from nuclear magnetic resonance. In particular, the magnetic-field-dependent precession frequency of nuclear spins allows their location in space to be encoded through the application of magnetic field gradients. This allows MRI to visualize signals from nuclear spins located throughout a specimen with ~100 µm resolution.

3D-Integrated High-sensitivity Optical Receiver

Increasing Silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this project a 3D-integrated CMOS/Silicon-photonic receiver is presented. The receiver is specifically designed to take advantage of low-cap 3D integration and advanced silicon photonics.

Fully Implantable Glucose and Lactate Sensor

Miniaturization of implantable biosensors for continuous, in vivo monitoring of clinically relevant analytes is an important step toward viability of such devices. While wireless power delivery via on-chip antennas promises miniaturization and realization of minimally invasive devices, it can only support low levels of power consumption. This is due to the significant tissue absorption at high frequencies, small size of the chip and quality factor of on-chip inductors. Therefore, reducing the power consumption of the sensor while maintaining high sensitivity and dynamic range is crucial.

Origami Biomedical Implants

Origami implant design is a 3D integration technique which addresses the size and cost constraints in biomedical implants. Large systems can be split into multiple chips and connected using 3D integration techniques to be folded compactly for implantation and unfolded inside the body. Electronics can be partitioned into functional blocks for mass-production and customs implants can be assembled from these relatively cheap modules.

PTAT Temperature Sensor for Micro-Ring Resonator Stabilization

As the resonance wavelength of micro-ring modulators is susceptible to temperature fluctuations, they require thermal tuning. The power consumed by wavelength stabilization circuitry is often higher than the transmitter itself. In this project a monolithic PTAT temperature sensor is proposed for low-power thermal stabilization of micro-ring resonator modulators through direct measurement of temperature.