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Abstract— Brain-machine interfaces have shown promising 
results in providing control over assistive devices for paralyzed 
patients. In this work we describe a BMI system using electrodes 
implanted in the parietal lobe of a tetraplegic subject. Neural 
data used for the decoding was recorded in five 3-minute blocks 
during the same session. Within each block, the subject uses 
motor imagery to control a cursor in a 2D center-out task. We 
compare performance for four different algorithms: Kalman 
filter, a two-layer Deep Neural Network (DNN), a Recurrent 
Neural Network (RNN) with SimpleRNN unit cell (SimpleRNN), 
and a RNN with Long-Short-Term Memory (LSTM) unit cell. 
The decoders achieved Pearson Correlation Coefficients (ρ) of 
0.48, 0.39, 0.77 and 0.75, respectively, in the Y-coordinate, and 
0.24 , 0.20, 0.46 and 0.47, respectively, in the X-coordinate. 

 
I. INTRODUCTION 

In the United States there are about 17,700 new cases per 

year of Spinal Cord Injury (SCI) [1].  SCI results in a partial 

or total loss of motor function. Brain-Machine Interfaces 

(BMI) have the potential to increase independence and 

improve quality of life in SCI patients by reading out neural 

signals and mapping them onto control signals for assistive 

devices [2]. There have also been efforts to use BMI to 

directly control paralyzed muscles [3], [4] and to decode 

speech signals from neural data [5], [6]. 

Data used in this work were recorded from the posterior 

parietal cortex of a tetraplegic human research participant 

[7]. Cells in this region have been shown to encode the goal 

of movements [8] and are also involved in sensorimotor 

integration and high-level motor planning [9]. These findings 

suggest that neural signals recorded from the parietal lobe 

could be useful for a variety of BMI tasks. 

Figure 1 shows a general setup for a BMI system. Because 

BMI systems serve as an interface between the cortex and 

peripheral devices, they need to be robust over time in the 

face of different sources of variability. For example, electric 

potentials in the cortex have small amplitudes and are 

susceptible to noise, and electrical and mechanical properties 

of implanted microelectrodes change over time. Neuronal 

populations may also change over time. Decoders should be 

able to generalize across sources of variability to accurately 

infer movement commands from changing neural signals. 
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Fig. 1.  General setup of a Brain-Machine Interface (BMI) system. BMIs 
enable direct control of computers, prosthetics and other peripheral devices 
by reading out and decoding brain activity. Advanced machine learning 
paradigms such as neural networks may be capable of learning the 
potentially complex relationship between recorded neural activity and 
control signals for these peripheral devices. 

 

 

 

 

Conventionally, the algorithms used for such a BMI 

system have assumed a linear relation between inputs and 

outputs (e.g., Kalman filters or Wiener filters) [10].  In recent 

years, due to progress made in machine learning and neural 

networks there has been an increased interest in adopting 

these novel techniques for BMI applications [11], [12]. In 

[11] Sussillo et al. implement a multiplicative RNN for 

decoding movements from motor cortex of non-human 

primates. Schwemmer et al.  in [12] use neural networks to 

perform multiple-class classification for several different 

actions performed by a human subject. With sufficient train- 

in data, these powerful machine learning algorithms could 

generalize over large variations in the recorded data. 

In this work we compare the accuracy of both linear and 

nonlinear decoders, including the Kalman filter, a two-layer 

Deep Neural Network (DNN), a Recurrent Neural Network 

(RNN) with SimpleRNN unit cell (SimpleRNN) [13], and a 

RNN with Long-Short-Term Memory unit cell (LSTM) [14]. 

We use Pearson Correlation Coefficient (ρ) as an accuracy 

metric. The data used for training was recorded from the 

parietal lobe of a tetraplegic subject while the subject 

performed a 2D center-out task using motor imagery. We 

report the accuracy of these decoders in open loop 

configuration, i.e. where the subject uses motor imagery 

while observing the task, but is not in the control loop. 
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Fig. 2. System architecture for decoding neural signals into relevant kinematics.  Broadband recorded  data  were band pass  filtered  (250 Hz - 5 KHz) and 
thresholded at −4 times the noise RMS. Threshold crossing timestamps were binned in no overlapping 50ms intervals and smoothed to estimate the 
instantaneous threshold crossing rate. Decoding algorithms map these input features to corresponding X and Y coordinates of the cursor on screen. 

 

 

II. ARCHITECTURE FOR THE BMI SYSTEM AND 

METHODS 

A. Subject, Implanted Electrodes and Recording 

As part of an FDA- and IRB-approved study, two 96- 

channel Utah microelectrode arrays (Blackrock 

Microsystems, Inc., Salt Lake City, UT, USA) were 

implanted in the posterior parietal cortex of a 32-year-old 

tetraplegic subject with spinal cord lesions at C5-C6: one on 

the medial bank of the anterior intraparietal sulcus (AIP), 

and a second in Brodmann’s area 5 (BA5) [7] (Figure 2). 

Data were recorded at 30,000 samples/sec. 

 
B. Preprocessing the Neural Data 

Figure 2 shows a top level block diagram of a BMI system. 

Broadband data were filtered (Butterworth filter, 250 Hz - 5 

KHz) and thresholded at −4 times the noise RMS of each 

channel to identify neuronal action potentials. These spiking 

events were binned at 50 ms intervals and smoothed to create 

spike train features for the decoding algorithms. To match the 

online case as closely as possible, action potential waveforms 

were not sorted, and spike trains were computed from the 

raw threshold crossings. The spikes recorded from both the 

electrodes were processed as described above and used as 

features for the decoder. 

 
C. Center-Out Reaching Task 

In this work we use neural and behavioral data collected 

during the open-loop phase of a 2D center-out brain-control 

task. In this phase of the task, a cursor moves under 

computer control, with a minimum-jerk velocity profile, 

from the center of a computer screen to one of eight different 

target locations arranged uniformly around a unit circle, 

while the subject uses motor imagery to imagine controlling 

the cursor. Data is collected in three-minute blocks, each 

block consisting of 53 trials, with a pseudorandom uniform 

distribution of targets across trials. The dataset underlying 

this work consists of five such blocks recorded on the same 

day. 

 

III. ALGORITHMS AND RESULTS 

We used this data to compare decoding performance 

between a Kalman filter, DNN, SimpleRNN, LSTM. LSTM 

and SimpleRNN algorithms are used for this  work  since the 

prediction task and the input neural data are sequential. The 

data were divided into training (80%), validation (10%) and 

test sets (10%). Training data was normalized to have zero 

mean and standard deviation of one to improve training 

algorithm convergence but test and validation data were 

normalized using scales learned from the training data. Time 

bins in which the cursor did not move (zero velocity) were 

excluded from analysis. In the case of the neural networks, 

separate decoders were trained for predicting X and Y 

coordinates (Figure 3(a)). 

The standard Kalman filter uses a model of the kinematic 

system, and a linear model of the relationship between the 

kinematics and the neural data, to form new estimates of  the 

kinematics from noisy measurements of neural data [10]. 

Variants of the Kalman filter support nonlinear dynamics, but 

in general, Kalman filters require the researcher to establish a 

model of the dynamical system. In contrast, neural networks 

learn the model from training data. 

We used two different neural network paradigms: DNN 

and RNN. A DNN is a feedforward network with multiple 

layers and several nodes at each layer. The output of each 

node has a nonlinear activation function. DNNs with two 

layers have been shown to be a universal approximator [15]. 

A RNN is composed of feedforward network as well as a 

feedback network, meaning that all previous outputs are 

integrated to predict the next time-step (Figure 3(b)). RNNs 

also use previous time steps’ input data when computing a 

new prediction. We tested two variants of RNN: one with 

LSTM unit cell [14] and one with the SimpleRNN unit cell 

[13]. 

A. Training and Accuracy of the Decoders 

The neural networks were trained using Keras with 

tensorflow backend, and incorporate L1 regularization and 

35% dropout for both the kernel and biases to reduce 

overfitting. An rmsprop optimizer was used for training the 

network [13]. All three neural networks use the hyperbolic 
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Fig. 3. Output of the decoding algorithm. (a) For the neural network algorithms, two separate decoders are used to predict X and Y position of the cursor. 
(b) A block diagram of RNN [13] with a single dense layer for regression. Also, an unrolled block diagram of RNN with multiple time-steps. The RNN unit 
can be either a fully connected SimpleRNN cell or an LSTM unit cell. 

 

TABLE I 

PARAMETERS FOR THE NEURAL NETWORKS 

TABLE II 

PEARSON CORRELATION COEFFICIENT ρ FOR EACH DECODER 

 

 
LSTM 10(X), 50(Y) LSTM+NN 40 tanh Y 0.48 0.39 0.77 0.75 
RNN 25(X), 25(Y) SimpleRNN+NN 20 tanh      

DNN 25(X), 25(Y) NN+NN 1 tanh      

 

 
 

as an activation function, and incorporate a dense layer with 

one node and a linear activation function at the output to 

perform regression. Network parameters were heuristically 

tuned; future studies will explore optimization techniques to 

tune these parameters for higher accuracy. In general, 

optimization techniques such as Bayesian optimization, grid 

search, random search etc. are used to choose optimal 

network parameters. The number of layers and nodes used 

for decoding were nominal to avoid overfitting, but with a 

larger dataset one could increase the size of the network to 

predict with consistent accuracy. 

Table I summarizes the parameters used for training these 

neural networks. The DNN had two layers with the first layer 

of the DNN composed of 25 nodes. The LSTM network for 

X position was set to 10 nodes with 40 time-steps of prior 

neural data, and the Y position was set to 50 nodes with 40 

time-steps. The SimpleRNN network used 25 nodes and 20 

time-steps of previous neural data for both X and Y 

coordinates. 

Table II shows the accuracy of the four different decoders. 

The RNN algorithms, with the ability to incorporate 

historical data to compute new predictions, achieved the 

highest performance. The DNN exhibited the lowest 

performance, likely because it uses only a single time step of 

neural data to predict the current kinematics. The Kalman 

filter performed better than the DNN, perhaps also because 

its iterative nature inherently captures prior state information 

to predict new states. Figure 4(a) and Figure 4(b) show the 

predicted X and Y coordinates of the cursor for the LSTM 

unit cell with a ρ 

of 0.47 and 0.75 respectively, and figure 4(c) and figure 4(d) 

show the predicted X and Y coordinates of the cursor with   a 

ρ of 0.46 and 0.77. 

 
IV. DISCUSSION 

In this work we evaluate the performance of several 

different neural networks, and compare their performance to 

a standard Kalman filter. Algorithms with the ability to 

incorporate historical data and network state demonstrated 

the highest performance (LSTM and SimpleRNN with the 

highest accuracies, and the Kalman filter with the next 

highest performance). LSTM also has the ability to recognize 

long-term dependencies in the data. Network paradigms with 

interconnected nodes and integration of historical data and 

states, such as the RNN variants tested in this work, may 

prove critical to first capturing the complexities of the 

relationship between neural activity and kinematic output, 

and second providing stable performance for BMI users. 

Our results showed a large difference in performance be- 

tween X- and Y-dimension kinematics. These differences are 

most likely attributable to the specific neuronal population 

recorded for the data used in this work, which may comprise 

different proportions of neurons modulated by movement in 

either axis. It is also possible that the research participant’s 

cognitive strategy led to these differences. Further data must 

be collected to understand the source of these differences. 

Future work will test RNN decoders in closed loop to 

evaluate how well a human subject can use them for cursor 

control. Stability of the decoder over multiple days will also 

be evaluated. Also, this will determine whether the capability 
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Fig.  4.  (a) Output  of a RNN  with  LSTM unit  cell  predicting  the  X  coordinates  of the  cursor  (ρ = 0.47).  (b)  Output of a RNN  with  LSTM unit   cell  
predicting  the Y coordinates  of the cursor (ρ = 0.75). (c) Output of the decoder with SimpleRNN unit cell  predicting  X-coordinates  of the cursor  (ρ = 
0.46). (d) Output of a RNN with SimpleRNN unit cell predicting the Y coordinates of the cursor (ρ = 0.77). 

 

 

of the LSTM to capture long-term dependency leads to better 

performance over time. 

While these algorithms are powerful in their capacity to 

capture complex relationships, they currently require power- 

hungry computational resources to operate. Part of making 

BMI systems clinically relevant is to design and develop 

size- and power-efficient hardware for decoding kinematics 

such that these systems can be implanted or worn on the 

body. Future directions would involve exploring such novel 

algorithms and energy-efficient hardware. 
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