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Abstract—A 41.2 nJ/class, 32-channel, patient-specific on-

chip classification architecture for epileptic seizure detection is 

presented. The proposed system-on-chip (SoC) breaks the strict 

energy-area-delay trade-off by employing area and memory-

efficient techniques. An ensemble of eight gradient-boosted 

decision trees, each with a fully programmable Feature 

Extraction Engine (FEE) and FIR filters are continuously 

processing the input channels. In a closed-loop architecture, the 

FEE reuses a single filter structure to execute the top-down 

flow of the decision tree. FIR filter coefficients are multiplexed 

from a shared memory. The 540 × 1850 µm2 prototype with a 

1kB register-type memory is fabricated in a TSMC 65nm 

CMOS process. The proposed on-chip classifier is verified on 

2253 hours of intracranial EEG (iEEG) data from 20 patients 

including 361 seizures, and achieves specificity of 88.1% and 

sensitivity of 83.7%. Compared to the state-of-the-art, the 

proposed classifier achieves 27× improvement in Energy-Area-

Latency product. 

I. INTRODUCTION 

Recently, classification techniques have enabled data-
driven solutions for closed-loop therapeutic and prosthetic 
devices [1-4]. These medical devices have benefited a broad 
range of neurological disorders such as epilepsy [1-3], sleep 
staging [4,5]. Prior findings confirm the presence of 
statistical and mathematical biomarkers in 
Electroencephalography (EEG) of such patients [6-8]. In 
epileptic seizures, an abrupt change in these biomarkers 
advance the clinical onset of the seizure. The interval varies 
from 0.5s to 10s [9]. Therefore, a fast and efficient classifier, 
which can predict a seizure incident in advance would enable 
drug delivery or can alarm patients or caregivers to take 
proper actions [10]. To assess our proposed on-chip machine 
learning classifier, epilepsy is chosen as the target disease 
due to the availability of continuous recordings from many 
patients. This architecture, however, can potentially benefit 
many other on-chip sensing applications. 

Researchers have employed a variety of classification 
algorithms and analog/digital circuit design techniques to 
implement low-power and area-efficient SoCs for seizure 
detection [1-2]. Time-division multiplexing band-pass filter 
architecture together with the log-linear Gaussian basis 
function classifier presented in [1] achieves one of the best 

energy efficiencies so far (1.31 J/class) with a latency of 2s 
and occupies 7mm

2 
working with 8 channels. Entropy-and-

 
Milad Taghavi, Benyamin A. Haghi, Azita Emami are with the Electrical 

Engineering Department, California Institute of Technology 

Email: {mtaghavi, benyamin.a.haghi, azita}@caltech.edu 

Masoud Farivar is with Google, Mountain View, CA, USA 
Email: masoudf@google.com 

Mahsa Shoaran is with the School of Electrical and Computer 

Engineering, Cornell University 
Email: shoaran@cornell.edu 

spectrum-aided method in [2] achieved a low latency of 0.8s 

with 6.5mm
2
 area and energy efficiency of 77.9 J/class for 8 

channels. In particular achieving a latency of < 2s with low 
energy consumption and small area is challenging [1]. 

To improve the strict energy-area-delay trade-off and 

increase the number of channels, we employed a patient-

specific prediction model in the form of an ensemble of 8 

decision trees (Figure 1a), trained by the gradient-boosting 

machine learning algorithm. The implemented SoC can 

support up to 32 channels. One fully-programmable FEE unit 

is used per tree and controlled by Tree Control Unit (TCU) in 

a closed-loop system to extract biomarkers [11,12]. Figure 1b 

shows a Mealy FSM implementation of the closed-loop 

system. This technique substantially reduces the power and 

area overhead. To extract spectral density features 

(biomarkers), a single FIR filter structure is used and its 

coefficients are multiplexed according to the feature being 

processed. The programmable-FIR structure reduces FEE 

area. As a result, the proposed closed-loop hardware 

architecture for decision tree based prediction models 

achieves an energy efficiency of 41.2 nJ/class with a small 

area of 1mm
2
.  

II. MACHINE LEARNING ALGORITHM AND DATA 

DESCRIPTION  

Gradient-boosting [13] is one the most successful 
machine learning techniques for classification. This 
algorithm produces a prediction model in the form of 
ensemble of weak learners. By exploiting a gradient-based 
optimization and boosting, the algorithm trains the prediction 
model to classify abnormalities in future feature vectors.  

Prior works [6-9] have studied optimal features for 
seizure onset detection. Based on the reported results, we 
chose a set of two time domain and nine Fourier transform 
domain measures as our feature set

1
. Since ripple, fast-ripple 

and high-frequency oscillation (HFO) are features from 
relatively higher frequency bands, we require our patient data 
to be sampled at comparatively higher sampling rates. The 
iEEG collaborative database [14] supports recordings both at 
high and low sampling rates (500-5000 samples/s) for 
epilepsy studies. 

For each patient, iEEG recordings are partitioned 
randomly ten times (80% training set, 20% validation set). 
Training sets are processed offline for feature extraction. For 
the purpose of feature extraction and training, time series 
divided into windows of 1s, and all features from all channels 
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Figure 1:  a) An ensemble of 8 trees trained for Patient ID# 3, b) Mealy FSM flowchart of closed-loop system 

 
are extracted for each window. Then, the extracted features 
from training sets are fed to the algorithm for training the DT 
ensemble. The trained prediction model, which is the output 
from the gradient-boosting algorithm, includes full 
information on tree structures in the ensemble such as each 
leaf values, thresholds and selected features. In the proposed 
classifier, seizure vs non-seizure events are indicated 
whenever the Decision Function (DF) for the ensemble is 
positive (1).  

                  DF = ∑ WTin →
8

n=1
 {DF<0     non−seizure

DF>0           seizure              (1) 

In this prediction model, the longest possible update 

interval of DF cannot be longer than the longest path in the 

ensemble. This update interval determines the latency of the 

system. To minimize latency, in validation set tests, features 

are extracted from minimum possible sub-window
2
 size of 

time series.  

In the proposed architecture, DTs trained while working 

freely and in parallel regardless of the sub-window size of 

nodes. Finally, to avoid long latencies, results of completed 

and incomplete decision trees been averaged. Detailed 

discussion of the classification algorithm can be found on 

[11,12,15]. 

III. PROPOSED ARCHITECTURE 

Figure 2 shows the main blocks of the implemented 

Mealy FSM for the SoC: i. Ensemble of 8 DTs; ii. Memory 

Control Unit (MCU); and iii. Asynchronous Trees Reset 

Control (ATRC). Functional description of these blocks is 

explained in the following subsections. 

 
2 delta: 2s, theta: 0.65, alpha: 0.5s, beta: 0.45s, gamma: 0.4s, ripple, fast-

ripple, HFO, total power, line length, variance: 0.1s 

A. DT ensemble 

The ensemble includes 8 decision tree structures with 

maximum depth of 4 (15 nodes). For each tree, TCU will set 

the next state’s memory pointer based on current state, 

comparator status and other internal flags. At each state 

transition, if the ‘end_flag’ is not active, the ‘start’ command 

will activate the FEE. When feature extraction and 

comparison is done, TCU resets all internal registers and wait 

for new node settings. At the last processing node of DT, 

TCU sends out the ‘tree_end’ flag and final node info to 

ATRC. In each node, according to node information of the 

current state, a multiplexer selects a channel among 32 

channels of input data. This channel is then fed to FEE. 

Processing of each selected feature is done in FEE 
module. A decoder activates/deactivates its sub-modules 
according to the current node’s selected feature. Sub-blocks 
process input data within the time the ‘start’ command is 
available. After feature extraction is done, ‘FEE_done’ flag 
becomes available for comparator and TCU. The final value 
of FEE will be held until the next update. 

B. Memory Control Unit 

The MCU monitors read/write access to memory. In the 
write mode, a decoder activates different memory sub-
modules for programming through serial input. It first sends 
out two reset pulses to the target sub-module. After these two 
pulses are cleared, the next data packet will be stored in the 
selected sub-module. For each DT, four sub-memory blocks 
with depth of 15 are storing the tree structure. These units 
include each node’s feature/channel selection, threshold 
values and etc. The fully programmable memory enables 
patient-specific seizure detection. In read mode, MCU 
receives pointers and commands from each DT, and sends 

a) b) 

 
Figure 2: Block diagram of the proposed SoC 
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back the requested information. MCU also 
activates/deactivates the dedicated filter coefficient outputs 
from memory to DTs according to their node info. After the 
outputs were updated, MCU sends out “ready_flag” to TCU. 

The total size of register type memory is 1kB. Shared 
filter coefficients take 262B. Each DT has a dedicated 690b 
memory for its node information. 

C. Asynchronous Trees Reset Control 

To capture all the descriptive abnormalities in the 
recordings, each tree works independently, i.e. when the 
‘tree_end’ flag of a tree is available, ATRC stores tree status 
and resets the tree to its initial state. The reset is held for 2 
clock cycles. After reset is cleared, the tree will start 
processing of input data. ATRC holds tree status until the 
next available ‘tree_end’ flag. Finally, ATRC assigns each 
tree’s respective leaf values to calculate DF according to (1). 

IV. HARDWARE DESCRIPTION 

Careful system-level analysis and hardware optimizations 
were employed to reduce the total power and area of the 
design. Following subsections cover the details of the 
implemented chip.  

A. Ensemble size 

Higher number of DTs in the prediction model would 
result in a larger area and higher power consumption. To 
find the minimum number of DTs in our prediction model 
while maintaining the accuracy, Area Under the Curve 
(AUC) performance of the ensemble versus the number of 
DTs for different values of the depth is simulated. As shown 
in Figure 3, the performance is not significantly improved 
(<5%) for depth values of 4 and higher. Also, an ensemble 
size of 8 would achieve an average performance of greater 
than 90%. 

B. Input bit precision 

The input bit precision have to be high enough to ensure 

the detectability of high-frequency features. On the other 
hand, lower bit resolution is preferred to reduce area and 
power. In order to find the optimum precision, the error in 
extracted HFOs from different channels of various patients 
was calculated with 9-12 bit-precisions. Figure 4 shows the 
error percentages with respect to floating point representation 
of input. A set of 400 time samples (each 1s) were randomly 
selected from iEEG database. As shown, 12-bit precision 
ensures less than 0.1% error in extracted HFO.  

C. Programmable FIR filters 

 To calculate spectral density features, a cascade of two FIR 

filters were implemented. The first stage decimates input 

samples. The second stage provides band-pass filtering. Each 

stage may also be bypassed according to feature selection. 

Since at each node of the tree only one feature is being 

processed, a single filter structure with programmable 

coefficients can be used. This would relax the area-power 

constraint in feature extraction. FIR filters have Type-1 direct 

symmetric structures with 7 and 35 taps for first and second 

stage, respectively. A high number of taps would lead to 

extra power and area consumption in FEE and memory. To 

select optimal number of taps, extensive analysis made on 

accuracy of extracted HFO. Filter architectures and length 

were chosen to ensure lower than 5% error in feature 

extraction for HFO over all the training and validation 

datasets.   

V. MEASUREMENT RESULTS 

For each patient, DT ensemble is programmed according 
to ensemble structure of his/her trained prediction model [see 
section II]. Then, the validation set partition of iEEG data for 
each patient is loaded on SoC for feature extraction and 
classification. Using the recorded classifier labels from DF, 
specificity and sensitivity are calculated according to (4) and 
(5) respectively: 

 
Figure 3: Average AUC at various depths versus number of tress in an 

ensemble 

 

 
Figure 5:  Sensitivity and specificity among patients 

 
Figure 4:  Error in extracted HFO for 9-12 bit. 

 

 
Figure 6:  Variations of DF next to the worst-case latency case for 

patient with ID#7 
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       Specificity =
True Negatives

True Negatives + False Positives
       (4) 

      Sensitivity =
True Positives

True Positives + False Negatives
       (5) 

 The proposed classifier achieves an average specificity of 
88.1% and an average sensitivity of 83.7%. The drop in 
sensitivity and specificity are due to limited frequency 
response of on-chip FIR filters in feature extraction. Figure 5 
shows the specificity and sensitivity of each patient. Figure 6 
shows variations of DF near ictal-marked data labels of 
Patient ID#7. As shown, the accumulated sum becomes 
positive 895 cycles after seizure incident. Figure 7 shows the 
worst case latency for each patient in this study.  

The total static and dynamic power of classifier are 40.4 

W and 166 W, respectively. The total dynamic power of 

memory (read/write) is 142 W. Each tree, when active, 

consumes 3 W of dynamic power. Power measurements 
were all made at worst-case scenarios where all the internal 
registers are switching and FEE is saturated (i.e. electrical 
onset of seizure incident). 

The SoC operates at 0.8 V and at maximum frequency of 
3.2MHz (serial input). Energy Efficiency of SoC at worst 
case power consumption (sampling rate of 5000 in this study) 
is 41.2nJ/class. Chip micrograph with area breakdown is 
provided in Figure 8. Each tree, together with its dedicated 
and shared memory allocations, takes 11.25% of the die area.  

 Table 1 summarizes the performance of the proposed 
design compared to the state-of-the-art seizure detection 
systems.   

VI. CONCLUSION 

A low-power, hardware efficient, on-chip machine 

learning classifier for epileptic seizure detection is proposed. 

Hardware architecture, design optimization and trade-offs 

were discussed. The proposed classifier achieves energy 

efficiency of 41.2 nJ/class and can process up to 32 

channels. The SoC is fabricated in TSMC 65nm mixed-

signal low-power CMOS process with dimensions of 540 × 

1850 um
2
. The SoC breaks the strict energy-area-latency 

trade-off. For a fair comparison with the state of the art, 

power (energy) and area numbers of [1] normalized to 65 

nm technology node. The proposed architecture achieves 

27× improvement in energy-area-latency. This classifier can 

potentially enable full integration of diagnosis and 

termination of epileptic seizure in closed-loop therapeutic 

and prosthetic devices.  

REFERENCES 

[1] M. Altaf, “A 1.83 J/classification Non-linear Support-Vector 

Machine-based Patient-specific Seizure Classification SoC,” in ISSCC 
Dig. Tech. Papers. pp. 100-101, Feb. 2013. 

[2] W. M. Chen, “A fully-integrated 8-Channel Closed-loop Neural-
Prosthetic CMOS SoC for Real-Time Epileptic Seizure Control,” 

IEEE JSSC, vol. 49, no. 1, pp. 232-247, Jan. 2014. 

[3] A. Shoeb, “Application of Machine Learning to Epileptic Seizure 
Onset Detection and Treatment,” PhD Thesis, Massachusetts Institute 

of Technology, Sept. 2009. 

[4] S. A. Imtiaz, “ An Ultra-low Power system on chip for automatic 

sleep staging,” IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp 
822-833 Mar. 2017 

[5] S. Iranmanesh, “An Ultralow-power Sleep Spindle Detection System 

on Chip”, IEEE Transactions on Biomedical Circuits and Systems, 
vol. 11, issue 4, Aug. 2017 

[6] M. Shoaran, “A 16-Channel 1.1mm² Implantable Seizure Control SoC 
with Sub-µWChannel Consumption and Closed-Loop Stimulation in 

0.18µm CMOS,” IEEE Symposium on VLSI Circuits, HI, Jun. 2016. 

[7] L. Logesparan, “Optimal Features for Online Seizure Detection,” E. 
Med Biol Eng Comput (2012) 50:659. 

[8] L. Boubchir, “A Review of Feature Extraction for EEG Epileptic 
Seizure Detection and Classification,” TSP, July 2017. 

[9] F. Bonini, “Frontal Lobe Seizure: From Clinical Semiology to 

Localization,” Epilepsia, vol. 55, no. 2, pp. 264-277, Dec. 2013. 

[10] M. Mirzaei, “A fully-asynchronous low-power implantable seizure 
detector for self-triggering treatment,” IEEE Transactions on 

Biomedical Circuits and Systems, vol. 7, issue 5, Oct. 2013 

[11] M. Shoaran, “Hardware-Friendly Seizure Detection with a Boosted 
Ensemble of Shallow Decision Trees,” EMBC, Aug. 2016. 

[12] M. Shoaran, “Energy-Efficient Classification for Resource-
Constrained Biomedical Applications,” IEEE Journal on Emerging 

and Selected Topics in Circuits and Systems (JETCAS), submitted. 

[13] J. H. Friedman, “Greedy function approximation: a gradient boosting 
machine,” Annals of Statistics, pp.1189-1232, 2001. 

[14] www.ieeg.org 

[15] M. Shoaran, “Efficient Feature Extraction and Classification Methods 

in Neural Interfaces” The bridge, National Academy of Engineering, 
Washington DC, vol. 47, no. 4, pp. 31-35, Winter 2017. 

 

 
Figure 8: Chip micrograph including the area breakdown 

 

Table 1 

 
*Area for the seizure detection block was not reported. The numbers 

have been conservatively estimated from total area breakdown 

 
 

 
Figure 7:  Worst-case latency for each patient 
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