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Abstract—Biomedical applications often require classifiers that
are both accurate and cheap to implement. Today, deep neural
networks achieve state-of-the-art accuracy in most learning tasks
that involve large datasets of unstructured data. However, the
application of deep learning techniques may not be beneficial
in problems with limited training sets and computational re-
sources, or under domain-specific test time constraints. Among
other algorithms, ensembles of decision trees, particularly the
Gradient Boosted models have recently been very successful in
machine learning competitions. Here, we propose an efficient
hardware architecture to implement gradient boosted trees in
applications under stringent power, area, and delay constraints,
such as medical devices. Specifically, we introduce the concepts
of asynchronous tree operation and sequential feature extraction
to achieve an unprecedented energy and area efficiency. The
proposed architecture is evaluated in automated seizure detection
for epilepsy, using 3074 hours of intracranial EEG data from 26
patients with 393 seizures. Average F1 scores of 99.23% and
87.86% are achieved for random and block-wise splitting of
data into train/test sets, respectively, with an average detection
latency of 1.1s. The proposed classifier is fabricated in a 65nm
TSMC process, consuming 41.2 nJ/class in a total area of
540x1850 pm?>. This design improves the state-of-the-art by
27x reduction in energy-area-latency product. Moreover, the
proposed gradient-boosting architecture offers the flexibility to
accommodate variable tree counts specific to each patient, to
trade the predictive accuracy with energy. This patient-specific
and energy-quality scalable classifier holds great promise for low-
power sensor data classification in biomedical applications.

Index Terms—Gradient boosted trees, hardware architecture,
on-chip classifier, decision tree, accuracy, feature extraction,
latency, seizure detection, energy-quality scaling.

I. INTRODUCTION

HE application of machine learning (ML) techniques has

been exponentially growing over the past decade [1], with
an increasing shift toward mobile, wearable and implantable
devices. ASIC implementation of machine learning models
is required to ensure a sufficiently fast response in real-time
applications such as deep brain stimulation and vital sign mon-
itoring [2]. Embedded learning at the edge and near the sensors
is also critical in applications with limited communication
bandwidth or privacy concerns [3]. Furthermore, to meet the
tight power budget in portable or implantable devices, it is
necessary to embed ML into integrated circuits rather than
power-hungry FPGA-based microprocessors [4].
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Deep neural networks (DNNs) currently achieve state-of-
the-art accuracy in most learning tasks that involve very large
datasets of unstructured data (e.g., vision, audio, natural lan-
guage processing). As a result, there have been significant re-
search and development efforts to design DNN accelerators [3]
and specialized ASICs, like Google’s TPUs. In the context
of hardware-friendly machine learning, a number of methods
have been recently explored, such as reducing the bit-width
precision [2], [3], sparsity-induced compression, pruning and
quantization [3], and mixed-signal MAC implementation [4].
The focus of these methods is on reducing computation, data
movement, and storage in neural networks.

However, application of deep learning techniques may not
be practical in problems with limited computational resources,
or under application-specific prediction time constraints. For
instance, a common requirement of diagnostic devices is
to minimize power consumption (down to microwatt-range)
and battery usage, while maintaining the desired prediction
accuracy and low latency. Moreover, without specialized op-
timization, straight-forward implementation of conventional
classification techniques can be computationally intensive,
requiring high processing power and large sizes of memory.
Indeed, even the simple arithmetic operations performed in
conventional classification methods, such as support vector
machine (SVM) and k-nearest neighbor (k-NN) algorithms
can become very costly with increasing number of sensors,
e.g., in multichannel neural implants. Therefore, there is a
need to explore alternative methods for severely resource-
constrained applications.

Among other algorithms, Gradient Boosted machines, par-
ticularly the XGBoost (XGB) implementation has recently
been a winning solution in ML competitions (e.g., the in-
tracranial EEG-based seizure detection contest on Kaggle [5]).
Here, we propose and optimize ensembles of decision tree
classifiers and related circuit level architectures for learning
applications under stringent power, area, and delay constraints,
such as implantable devices. In particular, we discuss a major
application of embedded classifiers in the context of closed-
loop neuromodulation devices: automatic seizure detection
and control in medication-resistant epilepsy. However, our
techniques are broad enough to impact several other diseases
and similar application domains.

With the end of Moore’s Law, it is foreseeable that energy-
quality (EQ) scalable systems will enable power savings that
were previously provided by technology and voltage scaling
[6]. EQ scaling may, in some cases, break the traditional
VLSI design tradeoffs by simultaneously improving the per-
formance, energy and area [6]. In this paper, we leverage
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Fig. 1: General block diagram of a closed-loop system for detection
and suppression of abnormal symptoms in a neurological disease. An
on-chip classifier is embedded into the implantable device.

hardware-inspired techniques to implement decision tree-based
classification algorithms, allowing us to employ various tree
parameters as tuning knobs for accuracy, latency, and energy
optimization. The resulting classifier significantly improves
the power and area efficiency of conventional methods, while
achieving a higher classification accuracy and sufficient la-
tency, therefore breaking the strict energy-accuracy tradeoff.
The tuning parameters include the number and depth of the
trees, number of extracted features, window size, and decision
update rate. By clever feature engineering and introducing
an asynchronous learning scheme, a new class of scalable
and low-complexity machine learning hardware for portable
sensor-based applications is proposed. Specifically, we analyze
the energy and quality scalability of our classifier in terms of
hardware-related parameters and diagnostic performance.

This paper is organized as follows. Section II presents a
review of previous methods that have been used for classi-
fication in biomedical domain, and describes their hardware
cost and scalability challenges. Decision tree-based classifiers
and existing hardware architectures are briefly discussed in
Section III. The hardware-friendly design of XGB classifier
and performance evaluation are presented in Section IV and
Section V, respectively. The details of SoC implementation
and measurement results are presented in Section VI, followed
by a discussion on scalability and hardware optimization in
Section VII. Section VIII concludes the paper.

II. EMBEDDED CLASSIFICATION IN
BIOMEDICAL DEVICES

Despite major advances in medicine and drug therapy over
the past decade, many disorders remain largely undertreated.
Where medications are poorly effective, stimulation may offer
an alternative treatment. For example, neurostimulation is to-
day a well-established therapy for essential tremor, Parkinson’s
diseases and epilepsy, and has shown promise in migraine
and psychiatric disorders. In particular, closed-loop neuro-
modulation has recently gained attention, e.g., in the form
of responsive neurostimulator (RNS) for epilepsy [7], and
adaptive deep brain stimulation for Parkinson’s disease.

General block diagram of a closed-loop neural interface
system is shown in Fig. 1. Following signal conditioning
and feature extraction, an embedded classifier detects the
disease-associated abnormalities in real time and triggers a
programmable stimulator to suppress symptoms of the disease,

e.g., a seizure or tremor, through periodic charge delivery
to neurons. A high sensitivity, sufficient specificity, and low
detection latency are the key requirements for the on-chip
classifier, while maintaining a small footprint and low power.

Epilepsy has been one of the primary targets of neuro-
engineering research, along with movement disorders, stroke,
and paralysis [8]. Abrupt changes in EEG biomarkers usu-
ally precede the clinical onset of seizures. Many researchers
have therefore focused on extracting epileptic biomarkers for
automated seizure detection [9]-[20], [21], and closed-loop
control through neuromodulation [12], [14], [17].

A. Prior Work on Machine Learning SoCs

A number of classification algorithms have recently been
explored for SoC implementation in diagnostic applications
such as seizure detection. An 8-channel linear support vector
machine EEG classifier for seizure detection is presented in
[15], using the spectral energy of each EEG channel in seven
frequency bins. The Gaussian basis function non-linear SVM
combined with time-division multiplexing (TDM) bandpass
filters in [16] achieves one of the best energy efficiencies so
far (1.83 pJ/class.), a latency of 2s, and a seizure detection rate
of 95.1%. Combined with front-end amplifiers and SRAM for
data storage, this chip occupies an area of 25mm? and supports
up to 8 EEG channels.

To avoid the linear growth in memory and utilized hardware
with number of channels and frequency bins, a frequency-
time division multiplexing approach is employed in [13], [14],
along with a dual-detector classification processor utilizing
two linear SVM classifiers. This closed-loop 16-channel SoC
integrates a transcranial electrical stimulator, chopping am-
plifiers and SRAM, occupying a die area of 25mm?. An 8-
channel wireless neural prosthetic SoC is presented in [17] for
intracranial EEG-based seizure control, using time-domain en-
tropy and frequency spectrum of individual channels and linear
least-square classifier. The entire system dissipates 2.8mW in a
total silicon area of 13.47mm?. A custom processor integrating
a CPU with configurable accelerators for SVM classification
with various kernel functions is implemented in [18]. Two
medical applications including EEG-based seizure and ECG-
based arrhythmia detection are demonstrated, while consuming
273 and 1244 per detection, respectively. An error-adaptive
boosting classifier is proposed in [19], using decision trees
as weak learners. To enable controllable injection of faults,
an EEG-based seizure detection system is implemented on
FPGA. Dedicated accelerators combined with RISC processors
are used in the 16-ch EEG-based SoCs presented in [20]
and [22], implementing the fast k-NN algorithm for seizure
detection, and SVM for mental status monitoring, respectively.
Performance of different classifiers such as £-NN, SVM, naive
Bayes, and Logistic Regression (LR) for EEG-based seizure
detection is compared in [21], where LR provides the best F1
score, area, power, and latency. A machine learning-assisted
cardiac sensor SoC integrating the maximum likelihood clas-
sification (MLC) and SVM is reported in [23] for ECG-based
arrhythmia detection.

It should be noted that comparison of accuracy for classifiers
that are validated on different datasets or tasks, e.g., those
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Fig. 2: Schematic of common learning models as potential candidates for hardware implementation: (a) support vector machines, (b) artificial
neural networks, (c) k-nearest neighbors [21], and (d) decision tree-based classifiers.

based on EEG vs. intracranial EEG (iEEG), is not pertinent.
While the main focus of our work is on hardware optimization,
to evaluate the overall accuracy, we compare the proposed
model to other classifiers on a large iEEG dataset [24].

In such biomedical applications, the complexity of classifi-
cation algorithm, and consequently, the associated power and
area, depend on the target (i.e., physician-defined) accuracy
and latency for the given diagnostic task. In particular, achiev-
ing a latency of <2s and high accuracy with low energy con-
sumption and small area is challenging [16]. To improve the
strict energy-area-delay tradeoff and increase the number of
channels, we employ a patient-specific prediction model in the
form of an ensemble of decision trees, trained by the gradient-
boosting algorithm. The main contribution of our work is a
hardware approach that enables energy reduction by minimiz-
ing the number of simultaneously extracted features, therefore
breaking the energy-area vs. accuracy tradeoff. We implement
a low-complexity, yet accurate classification algorithm, that is
inherently scalable to multichannel operation, through sharing
the computational and memory resources among channels. In
contrast to most other classifiers commonly used in literature
(e.g., SVM and k-NN) that linearly scale in computational and
memory requirements with number of channels and features,
our proposed classifier extracts a limited number of features
in a sequential fashion, regardless of total channel count.
This approach enables significant savings in computational
resources and storage on chip.

Moreover, we trade accuracy for lower energy, by using the
most energy-efficient tree structure for a given patient and a
target diagnostic accuracy. Details of our proposed method are
discussed in the remainder of this paper.

Given the relative complexity of classification algorithms,
the commercial devices in existence today, such as the Re-
sponsive Neurostimulator (RNS, NeuroPace) [7] for epilepsy,
sacrifice the detection accuracy to meet the design constraints
such as low power. The battery-powered RNS device in partic-
ular, includes three types of detectors: line length (measures

the total length of the signal in a given time period), area
(detects changes in signal power), and bandpass detectors.
Once implanted in the skull, the selected detector by the
physician is applied to a maximum of four channels and simple
thresholding method is used for seizure detection. However,
the detector type should be selected during the programming
of device (with line-length being the default detector), which
highly limits the sensitivity, specificity, and latency of seizure
detection task and may result in suboptimal closed-loop con-
trol. Our proposed hardware-friendly classification algorithm
would potentially improve the efficacy of current closed-loop
stimulation devices such as RNS, by selective computation of
features from a higher number of channels. This is achieved
through a nonlinear gradient-boosting ML model that can be
efficiently integrated on chip with low power.

B. Hardware Cost

When integrating a classifier on-chip, excessive memory
and hardware requirements for feature extraction and machine
learning, and the resulting power and area may preclude the
ability to process more channels. Power consumption and chip
area are mainly determined by the type and number of features,
the number of channels monitored, and the type of classifier.
The hardware costs associated with feature computation and
classification tasks are discussed below.

1) Feature Computation Complexity: Various characteristic
features can be extracted from neural data to detect the onset
of a particular disease state. A major drawback of common
classification methods, with the exception of decision trees, is
that they must extract all required features from every input
channel to classify the data. Therefore, they require extensive
computational resources. Filter banks that are commonly used
for spectral power extraction in non-overlapping bands are
a key to diagnose neurological disorders and many other
signal classification problems, e.g., voice detection, sleep-state
classification, irregular heartbeat detection. For instance, to
implement the SVM classifier in [18], the band-limited com-
ponents in eight different bins are extracted from EEG, using

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2844733, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

FIR filters. The energy of each component is accumulated in a
2s window, and the features from three consecutive windows
are combined, resulting in a feature vector with a dimension of
8x3xN, where N corresponds to number of EEG channels.
However, filters are computationally intensive due to MAC
operations. Various methods have therefore been explored to
reduce the number of multiplications needed or the associated
overhead, such as matrix-multiplying ADCs [25], TDM [16],
and frequency-time division multiplexing [14].

In contrast to low-frequency EEG-based systems [9],
[10], [16], [18], at higher frequencies associated with iIEEG
where high-frequency oscillations (HFOs) are among rele-
vant biomarkers [26], a larger number of bandpass filters
is necessary. Moreover, depending on the application, the
use of complex and non-linear features may be inevitable.
Selecting a small subset of hardware-friendly features [7],
[21], [11] can help to meet the power and area constraints, but
may sacrifice the classification accuracy. These classifiers also
require combinations of serializers, MUX/DEMUX circuits,
and buffers to store and process input data and features.

2) Classification Complexity: Simplified schematic of some
of the common classifiers for sensor data classification are
shown in Fig. 2. Neural Networks (NNs) are hardware inten-
sive and typically require high processing power to perform
complex computations, as well as large amounts of memory
to store many parameters on chip. Furthermore, due to limited
access to training sets and patient-specific biomarkers in
biomedical applications such as seizure detection (that require
extensive monitoring in an invasive setup at the hospital), NN
and Deep Learning classifiers would generally result in a poor
classification accuracy.

SVM with its intrinsic characteristics such as easy modeling,
reproducible results, and robustness through convergence to
global minima, has been the most commonly used classifier for
epileptic seizure detection from EEG [14]. Three SVM kernels
have been applied to on-chip seizure classification: linear,
second-order polynomial, and Gaussian SVM (RBF) [14]. The
latter achieves better tradeoffs between classification accuracy
and latency, with more complex implementation. However,
both polynomial and Gaussian SVM require sufficient seizure
patterns for training to achieve high accuracy, which is not the
case for patients with limited seizure data available [14]. The
general classification function of SVM is given by:

Ngy
fla) =" oK (s0;, %) + b e))
=1

where 7 is the feature vector, s¥; is one of the N, support
vectors, K is a kernel function, o and b are the modeling
parameters. Even though SVM has demonstrated impressive
performance in seizure detection from EEG [16], [15], [9],
[18], the computational complexity of the decision function
in (1) depends on the type of kernel [27]. Generally, a large
number of support vectors is required to yield high accuracy
in seizure detection, and using a strong classification kernel
such as RBF, the energy scales proportionally, dominating by
orders of magnitude over feature extraction, front-end, and dig-
itization [18]. While the primary computations for polynomial

and linear kernels are dot-product and weighted summation
over support vectors, the RBF kernel requires subtract-square
accumulation, exponentiation (commonly implemented via
CORDIC), and weighted summation over the support vectors
[18]. Excluding the nonlinear kernel, the hardware complexity
(i.e., number of multiplications and additions) is proportional
to Ng, X d, where N, is the number of support vectors
and d is the dimensionality of the feature vector [27]. The
number of required support vectors depends on separability of
the features. A greater number of support vectors is needed
for highly nonlinear separation boundary between classes.
While more computational resources are available in EEG
monitoring systems, the high computational complexity of
the RBF kernel makes it unsuitable for implementing in an
implantable device that acquires iEEG signals from within the
brain (similar to RNS device [7]). The linear SVM would
reduce the complexity of the seizure detection algorithm.
However, the performance may be degraded if the features
are not linearly separable [27].

k-NN classification requires computing the distances be-
tween the test and training features, while tracking the k&
smallest distances. While showing a good performance for
epileptic seizure detection [20], the large size of the training set
memory and the exhaustive search for nearest neighbors make
the classifier power demanding [20]. Moreover, k-NN is more
suitable for classification tasks with large sample sizes. In [21],
the k-NN classifier achieves a higher F1 measure in seizure
detection than the linear SVM, but it consumes dramatically
more FPGA resources and power [21].

A simple NN has inputs being multiplied by a weight
vector, added together and followed by a linear or nonlinear
function to generate the output to the next stage. Logistic
regression (similar to a one-layer neural network) uses a linear
weighted combination of features and generates the probability
of different classes. In general, such methods may not be
well suited for efficient hardware implementation due to the
complexity involved in feature extraction and classification.

Individual decision trees (DTs) and their ensembles, such as
Random Forests and Gradient Boosting, are among the most
useful and highly competitive methods in ML, particularly
in the regime of limited training data, little training time
and little expertise for parameter tuning. Authors in [27]
propose a non-linear classifier using AdaBoost technique with
decision stumps (trees of depth one) as base classifier, to
enable a low-complexity seizure detection system. The relative
hardware efficiency of DTs is evident from the fact that simple
digital comparators form the main processing unit of a DT,
with no need for multiplications, as illustrated in Fig. 2(d).
In [28], AdaBoost performs slightly better than SVM with less
hardware complexity, achieving a sensitivity of 77.1% (tested
on 873h of iEEG data) and a false alarm rate of 0.18/hour. The
hardware complexity of AdaBoost depends on the required
numbers of comparison operations, which is equal to the
number of decision stumps (60 in [28], with average feature
set size of 14.6). Given their reduced training complexity,
DTs are chosen among the various classifiers that have been
considered for boosting (e.g., SVMs, NNs) to implement the
error-adaptive classifier proposed in [19].
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A detailed discussion on hardware implementation of DTs
is presented in Section III. Given the variety of hardware
schemes used for different arithmetic units in classification
and feature extraction, we opted to use a unified metric for
evaluating the overall computational complexity of our design
and comparing it to prior works, by reporting the number of
equivalent 2-input NAND gates. This measure is provided in
the SoC comparison table in Section VI.

C. Scalability Challenges in Multi-Sensor Systems

Several studies show that a large number of acquisition
channels are required to obtain an accurate representation of
brain activity for disease diagnosis or movement decoding,
and the therapeutic potential of neural devices is limited at
low spatiotemporal resolution [29]. Similar concerns apply to
cardiac implants and ECG electrode arrays. Therefore, it is
expected that future interfaces integrate hundreds of channels,
posing extreme constraints on power dissipation of the circuits.
Besides, efficient realization of wearables and IoT devices
requires integration of multi-sensor platforms with embedded
machine learning techniques and real-time analytics.

Despite substantial research on machine learning, hardware-
friendly and scalable implementation is not sufficiently ad-
dressed. Even the simple arithmetic operations performed in
conventional classification methods can become very costly
with increasing number of channels and feature dimensions.
For instance, the size of feature vector & in (1) linearly
increases with number of channels, and so does the number of
multiplications and additions required in a linear SVM. Fur-
thermore, the current method of extracting features separately
from each channel requires either a dedicated ADC and feature
extraction unit per channel, or power-hungry multiplexing
circuits and buffers. Extensive system-level optimizations,
specialized hardware techniques, and new design paradigms
are needed to meet the energy and accuracy requirements,
while preserving the high-channel-count recording capability,
that has been addressed in this paper.

III. DECISION TREE-BASED CLASSIFIERS

Decision tree (DT) [30] is a popular non-linear ML model
where the target class is determined by a sequence of queries,
i.e., comparison to a threshold, on input features that start
at the root node and terminate in a leaf node, as shown
in Fig. 2(d). Compared to NNs, tree-based classifiers are
extremely fast in training and classification, and require far
fewer parameters for tuning. They can be easily parallelized,
and are robust to label noise. With simple comparators as their
building blocks, DTs are naturally a viable solution to reduce
complexity [31]. However, the conventional hardware for DTs
may not provide optimal results.

In [32], a wearable gait monitor using DTs achieved roughly
identical detection accuracy to SVMs, drawing 3x less power.
While DTs are commonly implemented in software, there are
a few works that implement DTs in hardware. A decision tree
spike sorting classifier was reported in [33]. The feature at
the active node is multiplexed from a total of four features
extracted from the spikes in a neural channel. Authors in [34]
present an acoustic front-end for speech classification using
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decision trees. A set of potential features (e.g., band-powers
using 8 analog bandpass filters in parallel) are extracted from
the input signal, and the feature at each node is multiplexed
from this set. The decisions are made by logically combining
the outputs of all nodes in a tree, e.g., 7 nodes in Fig. 2(d).

A. Conventional Hardware Architectures

Although the hardware solutions presented in [33], [34]
are suitable for applications with limited number of features
and scarce activity (e.g., spike sorting/voice detection where
the classifier and feature extractor are only active when a
spike/voice is detected), or limited input sources (e.g., voice
detection), extending this approach to multi-sensor systems
with more features is challenging and can be power-hungry.

As illustrated in Fig. 3, the direct implementation of DTs
requires initial extraction of all features from the input data
[33], [34], Fig. 3(a), (b), or allocation of a separate feature
extraction unit to each node, Fig. 3(c). In problems dealing
with multichannel and multi-feature signals, particularly where
a combination of trees is required to obtain a higher accuracy,
the utilized hardware by each tree must be minimized. For
example, assuming a 100-channel neural recording array and
a set of 10 features per channel (typical for seizure detection),
the first two architectures would require initial processing of
a thousand features, the associated memory, and multiplex-
ing circuits. Yet, only a small portion of these features are
employed in the classification task, that is the sum of visited
nodes in all trees (< maximum depth X number of trees).
Similarly, the third method would require 7 feature extraction
and multiplexing units per tree, as depicted in Fig. 3(c). Since
a maximum of one node at each level of the tree is visited, we
previously proposed to utilize one feature extraction unit per
level [31], to reduce the required hardware resources compared
to Fig. 3(c).

To support multichannel operation, the alternative approach
of placing a tree per channel would require the allocation of
a separate DT hardware to each channel. However, in case of
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disease detection, it is likely that only a small subset of chan-
nels capture the abnormal activity, e.g., the electrodes placed
in seizure foci. Therefore, training a classifier on the entire
array rather than separately classifying every single channel
would avoid the unnecessary extraction of features from silent
channels. In summary, while DTs offer significant advantages
to other classifiers by avoiding multiplication and using fewer
memory units, the existing hardware is not well-suited for
high-channel-count and resource-limited applications.

IV. HARDWARE-FRIENDLY XGB CLASSIFIER DESIGN

Here, we propose a hardware-efficient online classification
algorithm using an ensemble of gradient-boosted decision
trees, as illustrated in Fig. 4. Essentially during a classification
task by a decision tree, only one path from the root to
the leaf is visited. Therefore, unlike other classifiers, only a
limited number of features are necessary in practice to make
a decision. These features, however, are carefully selected by
employing powerful training algorithms that produce the opti-
mal tree structure to maximize the overall predictive accuracy.
The trained prediction model, which is the output from the
gradient-boosting algorithm, includes full information on tree
structures in the ensemble such as thresholds, leaf values, and
selected features (shown as Serial Control IN in Fig. 4, where
CH,; and FC; represent the channel number in the array and
feature number, respectively).

The intuition behind our hardware architecture is the follow-
ing. Since the decision of each tree is made upon completing
a series of successive comparisons, a single feature extraction
module (and the preceding ADC) can be sequentially used
to exclusively calculate the requested feature at the current
node. The split direction and next active node are determined
by comparing this feature with the corresponding threshold.
Therefore at each step, only the selected channel is used
for online feature extraction, without buffering the data from
other channels or extracting unnecessary features. As shown
in Fig. 4, the final answer is the sum of answers of all trees
(details are discussed below).

In our proposed architecture (Fig. 4), an ensemble of up
to eight gradient-boosted decision trees, each with a fully
programmable Feature Extraction Engine (FEE) including FIR
filters continuously process the input channels. In a closed-
loop architecture, the FEE reuses a single filter structure to
execute the top-down flow of the decision tree, where FIR
filter coefficients are multiplexed from a shared memory. This
approach results in significant hardware saving, compared to
the methods shown in Fig. 3. A potential drawback of this
serial processing approach would be the degraded latency, that
is carefully studied in this Section.

A comparison of hardware complexity for various DT
architectures (assuming a single tree) is summarized in Table I,
where N, M, and [ represent the channel count, maximum
number of nodes, and depth of a tree. The proposed archi-
tecture enables the lowest number of FEEs and classification
hardware, and therefore, the lowest complexity. The number
of FEE modules (or number of computed features) linearly
increase with number of channels in the first two methods.
Although our proposed architecture reduces the number of
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Fig. 4: Proposed hardware architecture for an ensemble of gradient
boosted decision trees.

TABLE I: Hardware Complexity of DT Architectures

Architecture | # of FEE [ # of Comparator [ # of MUX

Fig. 3(a) N 1 1
Fig. 3(b) N M* M
Fig. 3(c) M M* M
[31] l l l
This work (XGB-HW) 1 1 1

*Additional LUT is needed to generate the final decision.

feature extraction and classification (i.e., comparator and mul-
tiplexer) units, the memory needed to store the tree structure
and coefficient values remains the same in all architectures
in Table I. The detailed memory breakdown of our proposed
scheme is further discussed in this paper.

A. Gradient Boosted Trees

Gradient-boosting [35] is one of the most successful ma-
chine learning techniques that exploits gradient-based opti-
mization and boosting, by adaptively combining many simple
models to get an improved predictive performance. Binary
split DTs are commonly used as the “weak” learners. Boosted
trees are at the core of state-of-the-art solutions in a variety of
learning domains, given their excellent accuracy and fast oper-
ation. For example, among the 29 challenge winning solutions
published on Kaggle in 2015, 17 used XGB, where DNN was
the second most popular method, used in 11 solutions [36].

Boosting involves creating a number of hypotheses h;(x)
and combining them to form a more accurate composite
hypothesis. The output of a boosted classifier (or regressor)
with an input feature vector of = has the additive form of

H(x)= Z athi(x). 2)

where «, indicates the extent of weight that should be given to
hi(x). A general schematic diagram illustrating an ensemble
of depth-3 trees is shown in Fig. 5. Using gradient-boosting,
the trees are built in a greedy fashion to minimize a regularized
objective on the training loss [36].
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Fig. 5: Schematic diagram of a boosted ensemble of decision trees.

In this paper, we have employed the XGBoost package [36],
a parallelized implementation of the gradient boosting algo-
rithm. To assess the performance of proposed classifier on a
relatively large dataset, epilepsy is chosen as our case study,
given the availability of continuous recordings from many
patients. This architecture, however, can potentially benefit
many other on-chip sensor signal classification problems.
Applying XGB to our iEEG dataset, we observed over 100
times improvement in training speed compared to common
SVM implementations.

In the proposed hardware (Fig. 4), given that only one
channel is used at each feature computation step in a tree,
the rest of input channels can be switched off to save power.
For example, to classify a 100-channel neural data with 8
trees, only 8 channels are simultaneously active. In contrast
to SVM and other methods that require all features from the
entire array, this approach significantly reduces the memory
and hardware overhead. To reduce energy, a minimum number
of trees that obtain a sufficient accuracy are used, that is
chosen upon training. Moreover, as a significant advantage,
only one tunable bandpass filter can be used to extract as many
band-power features as needed, since these features are not
computed in parallel. By employing a programmable FIR (or
tunable analog) filter, the corresponding coefficients (or band
selection parameters) can be easily multiplexed from memory,
according to the feature being processed, as shown in Fig. 4.
Besides, as shown later in this paper, very little improvement
in performance is achieved by using trees with a depth of 4 and
above. Therefore, these ensembles can be made by a relatively
small number of low-depth trees, resulting in significantly
lower computational complexity than conventional models, as
later confirmed in our comparison table in Section VI.

B. Delay Constraint

The proposed architecture faces a practical challenge of
designing decision trees under application-specific delay con-
straints. Given any ensemble 7 = {73,..., 7} of decision
trees obtained from our original method, we need to ensure
that each tree 7; satisfies the delay constraint:

Z d; < AT 3)

iem(h)

where d; is the time required to compute feature f;, AT is the
maximum tolerable detection delay, and 7(h) is the set of all
predecessors of node h. One possibility is using a “greedy”
algorithm to solve this practical constraint by building trees
that satisfy the delay requirement, as depicted in Fig. 6.
However, this algorithm may result in a suboptimal solution,

Input: Original trained tree ensemble 7 = {71, ...
Output: Delay-constrained ensemble 7' = {7{,..., 7T/}
Data: training set: S = {(z;,v:)}
feature set: F' = {f;}, each with delay d;
delay tolerance: AT
set of predecessors of node h: 7(h)
for all trees T; in T do
for each node h € {1,...,|T;|} do
if > icnndi > AT then
Vf; € F find feasible f that obtains the best
SplitCriterion(f;, S)
Label node h with f
Grow Subtree(h)
end
end

end

Fig. 6: A greedy training algorithm to meet the delay constraint.

since the split criterion and subsequent feature selection is
subject to the hard constraint on delay.

C. Asynchronous Tree Operation

To solve this issue, we introduce an asynchronous approach
where trees freely run in parallel, each with features that max-
imize the accuracy, regardless of their computational delay.
Using the averaged results of completed trees and previous
results of incomplete trees, decisions are frequently updated
to avoid long latencies.

1) Decision-Making Procedure: First, we need to select an
optimum time to update the decision of the system. Suppose
that we have k trees represented by 7;, i € {1,2, -+, k}.
Assuming that ¢; is the total time associated with the longest
path in 7;, we select the optimum update time as:

bk} “4)

This guarantees that at least one tree will be completed in
this interval, and a new decision is made every ;. Then, we
calculate the average value of decisions for each tree:

1
D, = E_;m )

where N; is the number of completed cycles over %,,; and
r1,72, -+ , TN, are the corresponding results (i.e., leaf values)
of 7;. In a boosting classifier, the answers of all trees must
be summed up to make the final decision. Positive answers
are classified as seizure and negative ones as non-seizure. The
final result of the system is therefore updated as below:

topt = min{tl, tg, ..

k
Dyina = Z D, (6)
i=1
In case there is no new answer for tree 7; after ¢,,:, we simply
use its previous decision. By employing this approach and
assuming an initial setup time, there always happens to be at
least one result produced during t,,; to make a decision.

In the proposed asynchronous architecture, each tree con-
tinues to test the input data, without waiting for other trees to
complete. Suppose that x is a test input that moves through
the tree. As x enters node 7, it takes time d; to calculate
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TABLE II: Patient Data and Signal Acquisition Info.

Subj. | iEEG Portal ID | No. Elec. [ No. Seiz. | Rec. Dur. | Samp. Rate

1 Study 004-2 56 3 7d 18h 500
2 Study 006 56 5 1d 14h 500
3 Study 017 16 9 7d 17h 500
4 Study 011 88 3 3d 12h 500
5 Study 022 56 7 3d 23h 500
6 Study 023 88 4 2d 5h 500
7 Study 012-1 60 6 3d 7h 500
8 Study 027 48 6 3d 21h 500
9 Study 016 64 7 5d 21h 500
10 Study 031 116 5 6d 15h 500
11 Study 030 64 8 5d 23h 500
12 Study 020 56 8 5d Oh 500
13 Study 014 104 15 6d Oh 500
14 Study 021 108 13 6d 11h 500
15 Study 026 96 22 3d 3h 500
16 Study 024 88 19 8d 10h 500
17 Study 028 96 9 1d 16h 500
18 Study 038 88 10 3d Oh 500
19 Study 005 16 151 6d 16h 500
20 1001_P034_DO1 47 16 1d 8h 5k
21 Study 040 116 6 2d 23h Sk
22 Study 036 96 4 4d 14h Sk
23 Study 019 96 36 5d 16h 500
24 Study 033 128 17 6d 17h 500
25 Study 029 64 3 5d 1h 500
26 Study 037 80 8 8d 23h 500
TABLE III: Evaluated Features

Feature [ Description

Line-Length (LLN) % >4 lz[n] — z[n — 1]|, d = window length

Power (POW) Total spectral power

Variance (VAR) é > a(x[n] — p)? where p = é >oa(z[n])

Delta (0) Spectral power in 1-4Hz

Theta (0) Spectral power in 4-8Hz

Alpha (a) Spectral power in 8-13Hz

Beta () Spectral power in 13-30Hz

Low-Gamma (1) Spectral power in 30-50Hz

Gamma (72) Spectral power in 50-80Hz

High-Gamma (v3) Spectral power in 80-150Hz

Ripple Spectral power in 150-250Hz

Fast Ripple (FR) Spectral power in 250-600Hz (@ SR = 5kHz)

the feature f;. Based on the value of f;, a split to either
right or left branch is made, and the process continues until a
leaf is reached. By effectively averaging the decisions of fast
trees over multiple cycles, while allowing the longer trees to
complete, we show that the overall performance of this online
asynchronous approach is even superior to the conventional
offline method [31], where features at different nodes are
simultaneously extracted over the same window and decisions
are made at the end of this window (a hardware-intensive
solution). Since it is likely that more than one answer would
be provided by ¢, averaging can reduce the impact of noisy
decisions. Moreover, features are extracted from successive
parts of the decision window, rather than one feature for the
entire window. Therefore, the decisions are more accurate,
while the optimum selection of update time in (3) reduces
the detection latency.

V. PERFORMANCE EVALUATION

As a benchmark, we consider a boosted ensemble of 8 trees
with a maximum depth of 4 using proposed model (XGB-
HW), and compare it to the linear, cubic, and RBF SVM, k-
NN with 3 and 5 neighbors, Logistic Regression, offline XGB
(abbreviated as XGB) [31], Random Forest and Extra Tree
classifiers, both with 8 trees and a maximum depth of 4. A
hyperparameter tuning of classifier parameters was performed
to find optimum settings.

Block 1 Block 2 Block 3
| NSz | L74 | NSz | sz | NSZ | sz | NSZ

Fig. 7: The proposed block-wise data partitioning, where SZ and
NSZ represent the seizure and non-seizure segments, respectively.

A. Data Description

In this work, we use the publicly available data from the
intracranial EEG portal [24]. Continuous recordings from 26
patients sampled at either SO0Hz or SkHz are included in
our study. The seizure events are marked by physicians, and
patients have been recorded at varying channel counts (ranging
from 16 to 128). The access IDs of analyzed patients and
further details are provided in Table II. Overall, we studied a
total of 3074 hours of iEEG including 393 seizures.

B. Train/Test Split

A common problem in performance evaluation of real-time
classifiers such as seizure detectors is to randomly partition the
entire data into train and test samples. Shuffling provides prior
information from parts of test data (that should remain unseen)
during training, resulting in data leakage. We use a block-
wise splitting approach to avoid this problem and fairly assess
the performance of our classifier for practical test conditions
such as seizure detection. In the block-wise method shown
in Fig.7, we divide the continuous iEEG data into seizure and
non-seizure segments, where each seizure is concatenated with
the following non-seizure segment into a larger “block™ (the
first non-seizure segment is added to the beginning of first
block). Thus, each block is comprised of a complete seizure
attached to the following non-seizure segment. Most patients
in our dataset have sufficient and long enough seizure data
to allow this approach. However, cases with small number of
short seizures are not good candidates for block-wise selection.
Therefore, we removed two patients from our initial dataset.

For the purpose of feature extraction during training and
offline testing, we divide the time series into 1s windows
and extract all features from channels for each window. We
compare our block-wise method with the commonly used
random split, in which a 5-fold cross-validation is applied
to the shuffled data, followed by a hyperparameter tuning
to maximize the F1 score for all classifiers. To tune the
parameters for the block-wise approach, we apply a block-
wise 5-fold cross validation. In this case, 20% of blocks
(rounded up to the nearest integer) are retained for testing the
model, and the remaining are used as training set. The cross-
validation process is then repeated for 5 times and the results
are averaged to produce a single estimation. For patients with
less than 5 seizures, we opted for a block-wise leave-one-out
approach, where we use one block as test and the remaining
blocks as train, and repeat this for all blocks. To evaluate the
corresponding F1 score, sensitivity, and specificity, we use the
tuned parameters for each patient and average the results of
cross validation tests as described above. For XGB-HW, the
trained prediction model generated by the gradient-boosting
algorithm includes all the information on tree structures such
as leaf values, thresholds and selected features. Using this
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Fig. 8: The overall classification performance at various depths versus
number of trees.

trained model, the online XGB classifier is tested according
to the procedure described in Section IV. C. To minimize the
update interval and latency, features are extracted over smaller
time windows than 1s.

C. Feature Extraction

Prior works [37]-[41] have extensively analyzed the optimal
features for seizure onset detection. For instance, line-length
achieves the best seizure detection performance among more
than 65 different time and frequency-domain features in [37].
This time-domain feature is a measure of line length between
successive samples and provides an appropriate characteristic
of epileptiform iEEG, since it increases at both low-amplitude
fast and high-amplitude slow activities, that normally occur
prior to a seizure [39]. Another frequently used feature is the
energy of the signal, as a measure of signal power over time.
It was firstly shown in [38] and later by several investigators
[39]-[41] that the power and variance of EEG/iEEG signals
are increased minutes prior to seizure onset. In addition,
many studies on EEG signals have been focused on spectral
power features in the range of below 30Hz (i.e., the Berger
bands) [37], [9], [15]. However, the iEEG signals span a
wider frequency range and go beyond 200Hz for seizure
biomarker extraction [26]. These high-frequency oscillations
(HFOs) have been previously studied by many researchers
[26], [42]. The authors of [42] have concluded a significant
potential of HFOs for seizure detection from iEEG.

Based on our initial study on discriminative performance
of several frequency and time domain features [31], and the
existing literature [37]-[41], we chose the following set of
features: line-length, total power, time-domain variance, and
power in multiple frequency bands, as listed in Table III. We
previously analyzed the discriminative performance of this
feature set on an extensive iEEG database [31], in which line-
length was the best discriminative feature. While the optimal
frequency range was patient-dependent, in majority of patients
sampled at a sufficiently high rate (5k), it had a clear shift from
low-frequency bands toward gamma, ripple, and fast ripples.

Rather than using the absolute value of spectral power [31],
normalized features were calculated by dividing the spectral
power within each frequency band by the total power. The
power values (and corresponding thresholds) typically change

100 I F1 Score [l Sensitivity [ Specificity | |
<
S ool
®
2 90
©
€ 7
2
o 60r
o
S 50
>
< 40,
30 ||
N P & & PN O
Q;g‘ +0 & & V@%@Q.«oﬁ & Qg’
© O %q@ S

[EEF1 Score I Sensitivity [ Specificity ||

100 —
90
80

70

60

Avg. Performance (%)

50+

I SR SN S S
ébg\ & < IS »dé o @529
e Y S

(b)

Fig. 9: Comparison of average predictive ability (F1 score), sensitiv-
ity, and specificity of different classification methods among patients,
using (a) block-wise, and (b) random splitting methods, respectively.

with the daily life status of a patient, such as sleep state,
physical or mental activities, and consciousness level [43]. In
contrast, normalized values are more robust with respect to
fluctuations in a patient’s daily life and have been utilized in
our study. Features are obtained from each iEEG channel using
Is windows for training and offline testing. During online
testing, we assign a minimum extraction time to each feature,
based on their computational delay. Using normalized band
powers, we observed an improved seizure detection accuracy
compared to absolute spectral power features used in [31].

It should be noted that various other features may be
included to enable more accurate seizure detection. However,
the focus of this work is on the classification algorithm. The
literature pertaining to analysis of various features for epilepsy
diagnosis is immense, and can be found in [37]-[41].

D. Depth and Number of Trees

Decision trees are very efficient, but also susceptible to
overfitting in problems with high feature-space dimensionality.
To address this, we limit the number of nodes in each tree,
i.e., design shallow trees using small number of features [31].
Shorter trees are also more efficient in hardware and incur
less detection delay. Figure. 8 shows the area under the
curve (AUC) performance of an ensemble of gradient-boosted
trees versus the number of trees for different values of depth
parameter. An important observation is that the detection
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accuracy is not significantly improved (< 0.5%) with depth
values of 4 and higher. Besides, an AUC higher than 90% is
achieved using fewer than 10 trees of depth 3 or 4. Therefore,
the total energy can be minimized by limiting the number of
trees and depth, which are chosen as 8 and 4 in our study.

E. Performance and Comparison

The average performance of classifiers across patients are
shown in Fig. 9(a) and (b), using block-wise and random
splitting methods, respectively. As mentioned before, due to
correlation of iEEG waveforms, random splitting can allow the
model to learn from parts of test data and statistics of unseen
seizures during training. Therefore, it creates overly optimistic
predictive models and invalidates the estimated performance.
In this paper, we consider block-wise approach to alleviate the
leakage problem. The F1 score is calculated by counting the
number of correctly classified windows, given by:

2

Bl=—= -7 )

Sen.

Spec.

where sensitivity and specificity represent the true positive
and true negative rates, respectively. The asynchronous XGB
(XGB-HW) performs best among all classifiers, reaching an
average F1 score of 99.23% and 87.86%, for the random and
block-wise splitting methods, respectively, with an average
block-wise sensitivity of 80.33% and specificity of 98.12%.
This is achieved by efficient design of the learning algorithm
in an asynchronous online fashion, while minimizing the hard-
ware resources and energy. As expected, random split leads
to higher, but unrealistic predictive accuracy. Interestingly,
only tree-based methods, in particular, the XGB could classify
patient 21°s seizures (87% F1 score), while all other classifiers
failed for this patient. Random forests generally require a large
number of trees to obtain a high performance, which is not
suitable for on-chip implementation. Our results indicate that
the proposed asynchronous gradient-boosting method with as
low as eight trees, has a higher generalization ability on this
iEEG dataset, compared to methods such as k-NN, LR, and
SVM. The performance could be further boosted by artifact
removal, as some datasets (e.g., patient 13) are contaminated
by high-frequency artifacts that particularly overlap with FR
band. To evaluate the detection latency, we count the number
of correctly classified ictal windows at the beginning of
a seizure, and wait for at least three consecutive seizure
decisions to remove the effect of transient noises. Figure. 10
shows the latency among patients, with an average of 1.1s.

F. Feature Importance

Figure. 11 summarizes the overall performance of examined
features across patients. Line-length stands out as the best
feature, in accordance with many other studies [37]. Variance,
ripple, and fast ripple are next. Interestingly, we observe a clear
shift in discriminative performance of spectral power features
from Berger bands toward gamma, ripple, and fast ripples (all
normalized). However, as explained in [15], [9], to distinguish
between seizure and non-seizure data, both dominant and
less dominant frequency components are required, as well
as the spatial variation among channels, that is achieved
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Fig. 10: The detection latency of XGB-HW across patients.
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Fig. 11: Overall feature importance for the proposed classifier.

through a multichannel analysis. In this work, we implement a
programmable filter with flexible bandwidth settings to cover
all seizure-related frequency components. By using a single
filter architecture with programmable bandwidth, the hardware
complexity of FEE is significantly reduced compared to prior
works that integrate multiple parallel bandpass filters.

VI. SOC IMPLEMENTATION

Figure. 12(a) shows the block diagram of the implemented
SoC based on the asynchronous XGB classifier presented in
Section IV [44], [45]. This classifier supports up to 32 neural
channels. One fully programmable feature extraction unit is
used per tree and controlled by the Tree Control Unit (TCU) to
extract epileptic biomarkers. A Mealy FSM implementation of
the closed-loop system is chosen, that substantially reduces the
power and area overhead. To extract spectral density features,
a single FIR filter structure is used and its coefficients are
multiplexed according to the feature being processed, thus
reducing the total area. As a result, the classifier achieves an
energy efficiency of 41.2nJ/class in a small area of 1mm?.

Features of line-length, variance, and total power are
implemented with standard digital logic according to their
mathematical definitions in Table III, and contribute to a
small portion of feature extraction area (<15%), as shown in
Fig. 12(b). The main blocks of the implemented Mealy FSM
include the ensemble of 8 DTs with programmable FIR filters,
a Memory Control Unit (MCU), and an Asynchronous Tree
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Fig. 12: (a) Block diagram of the implemented SoC; (b) Power breakdown, die micrograph, and area breakdown of a single tree and FEE.

Reset Control (ATRC). The detailed functional description of
these blocks is discussed as follows.

1) DT Ensemble: The ensemble includes 8 decision tree
structures with a maximum depth of 4 (15 nodes). For each
tree, TCU sets the next state’s memory pointer according
to the current state, comparator status, and internal flags. A
multiplexer selects one channel from the 32-channel input
data, according to the current state. This channel is then fed
to FEE. At the last processing node of each tree, TCU sends
out the ‘tree-end’ flag as well as final node info to ATRC.
Epileptic features are computed in the FEE module. A decoder
activates/deactivates its sub-modules according to the feature
under study at the current node.

2) Programmable FIR Filters: To calculate spectral power
features, a cascade of two FIR stages is implemented. The first
stage decimates input samples, while the second stage provides
bandpass filtering. Each stage may be bypassed according to
selected feature. Since at each node of a tree only one feature
is being processed, a single filter structure with programmable
coefficients can be used. This would significantly relax the
area-power constraints in feature extraction module. The FIR
filters have Type-I direct symmetric structures with 7 and 35
taps for the first and second stages, respectively. A direct
symmetric structure enables using half the multipliers needed
for a standard FIR filter, as well as 50% saving in coefficient
memory. A high number of taps would lead to extra power and
area in FEE and memory. To select optimal number of taps,
extensive analysis was made. Given the importance of higher
frequency features in seizure detection as shown in Figure. 11,
we particularly focused on the required accuracy for capturing
low-amplitude ripple and fast ripple features (i.e., HFOs) with
short duration and rare occurrence [31], [26]. Thus, the filter

architecture and length were chosen to ensure lower than 5%
error in HFO extraction over the entire training set.

3) Memory Control Unit: MCU monitors the read/write
access to the memory. In the write mode, a decoder activates
different memory sub-modules for programming through the
serial input, that is generated during patient-specific training.
The filter coefficients and prediction model are stored in
memory. The fully programmable memory allocation enables a
patient-specific seizure detection. The total size of the register
type memory is less than 1kB, with shared filter coefficients
using 228B. The memory associated with filter coefficients is
shared among trees. Thus, it is not scaled by increasing the
number of trees. Each DT has a dedicated 690b of memory
for its node information (690B for 8 trees). Four sub-memory
blocks with a depth of 15 store the tree structure, including
each node’s feature/channel selection, decimation filter selec-
tion, threshold, and leaf values, tree structure (whether there
is a child node or not), and window size for feature extraction.

In the read mode, MCU receives pointer address and
commands from each DT, and sends back the requested
information. It also activates/deactivates the associated filter
coefficients from memory to DTs, according to the correspond-
ing node info. Trees work independently in a parallel fashion,
using an Asynchronous Tree Reset Control.

4) Asynchronous Tree Reset Control: To effectively capture
all abnormalities in the data, each tree works independently
and computes its trained features to maximize the accuracy,
regardless of computational delay. When the ‘tree-end’ flag of
a tree is raised, ATRC stores the tree status and resets it to the
initial state. After reset is cleared, the tree starts processing
of new input data. ATRC holds the tree status until the next
available ‘tree-end’ flag. Finally, ATRC assigns each tree’s
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respective leaf values to calculate D;,q; according to (6).

Input Precision: The input bit precision should be
sufficiently high to ensure the detectability of weak high-
frequency features. According to [46], at least 12-bit resolution
is required to extract correct FR patterns for seizure onset
detection. On the other hand, lower bit resolution is preferred
to reduce the chip area and power. To find the required number
of bits, HFOs from various patients were calculated at 9-12
bit precisions of input data, and compared to those extracted
from ideal floating point input. With some extra margin that
accounts for lower effective resolution of ADC, we chose 12
bits that ensures less than 0.1% error in the amplitude of HFOs.

Experimental Setup and Measurement Results: The chip
micrograph of the proposed classification architecture fabri-
cated in a 65nm TSMC process and its area breakdown are de-
picted in Fig. 12(b), as well as the area breakdown of a single
tree and the FEE. Each tree, including its dedicated and shared
memory units, takes 11.25% of the die area. Figure. 12(b) also
shows the power breakdown of the proposed SoC operating at
a 0.8V supply, with an energy efficiency of 41.2nJ/class. Power
measurements were made at worst-case scenarios where all
the internal registers are switching and FEE is saturated (i.e.,
electrical onset of seizure is approaching).

In order to test the seizure detection performance of the
fabricated chip, iEEG recordings from epileptic patients were
digitized on a local PC with 12-bit resolution. The digitized
data of all channels were then serialized and stored on the
DDR2 SDRAM of an Altera DE4 board, as shown in Fig. 13.
The information of prediction model was serially sent to the
Serial Programming input of the implemented SoC (shown on
the right). Once the prediction model is stored on memory,
FPGA provides input clock and start command to SoC. For
each patient, the chip is programmed according to the ensem-
ble structure of his/her trained prediction model. Then, the
test iEEG data of that patient is loaded to the chip for feature
extraction and classification. Using the measured decisions,
sensitivity and specificity are calculated. We tested the chip
with 2253 hours of iEEG data from 20 patients. As the chip
handles up to 32 input channels, those patients with up to 32
channels in their trained prediction model were used for the
test. Given the limited data storage on FPGA, up to 10 hours
of iEEG data was used for each test. The exact duration was
determined based on the state of iEEG data. In the case of
significant seizure-like activity in the vicinity of 10 hour, the
duration of test data was reduced to 9 hours, with the last 1-
hr added to the following experiment. Table IV summarizes
the performance of this system compared to the state-of-the-
art on-chip classifiers for seizure detection. In measurements,
the classifier achieves an average sensitivity and specificity of
83.7% and 88.1%, respectively. For a fair comparison with
state-of-the-art, energy and area of [16] are normalized to the
65nm technology node. The proposed architecture achieves
over 27x improvement in energy-area-latency product.

VII. SCALABILITY AND HARDWARE OPTIMIZATION

The small number of channels in existing neural interface
technology remains a barrier to the therapeutic potential. For
instance, the spatial coverage and resolution of electrodes
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Fig. 13: Experimental setup to measure the on-chip classifier.

has a high impact on the detection accuracy of epilepsy
implants [29]. The proposed XGB classifier in this paper is
inherently scalable to multi-sensor and multichannel operation,
through sharing the computational and memory resources
for feature extraction and classification among channels. In
contrast to a majority of other classifiers that linearly scale
in computational and memory requirements with number of
channels and features, the proposed classifier computes a
handful of features per tree, regardless of total channel count.
This approach enables significant savings in computational
resources and required storage on chip.

Although we have chosen a relatively simple feature set
in this study, one may use additional complex and non-linear
features to boost the accuracy at a negligible cost. The total
number of feature extraction units to be physically placed on
chip is proportional to number of trees, while only one feature
is computed in each tree at a time, saving both power and
area. In other words, we can include as many features as the
application requires, since they only scale up with number
of trees and do not pose excessive memory and hardware re-
quirements. Without any channel selection or feature reduction
techniques (that is required in most traditional methods due to
large dimension of features), the proposed classifier inherently
selects an optimal set of channels and related features that
form the tree structure. Thus, the main contribution of this
work is a hardware approach to enable energy reduction by
minimizing the number of simultaneously extracted features,

TABLE 1IV: SoC Performance and Comparison

[ ISSCC'13 [16] | JSSC' 13 [15] | JSSC 14 [17] | JSSC'I3 [18] | This work

Parameter

Process 180 nm 180 nm 180 nm 130 nm 65 nm
Classifier Non-Lin SVM Lin-SVM LLS svMm¥ XGB
Signal Modality EEG EEG iEEG EEG iEEG
Channel Count 8 8 8 18 32
Energy Eff. 1.23*pJ/class 1.52*%pd/class | 77.91pud/class 273 pd/class 41.2nJ/class
Logic Sizet 2.27TM 3.3M N. A. 371k 330k
Memory [kB] N.A. N.A. N.A. 32 1
Area 7 mm?Zx 8.18 mm?x 6.5 mm*~* 5.13 mm 1 mm
Sensitivity [%] 95.1 N.A. 92 N.A. 83.7
Specificity [%] 94 N.A. N.A. N.A. 88.1
Latency [s] 2 2 0.8 N.A. 1.79%1

* Area and Energy Efficiency conservatively estimated from A/P breakdown
1 Number of equivalent NAND2 gates with driving strength of one

1 Linear, Polynomial, RBF

§ 32kB SV MEM, 16kB Programming MEM, 16kB Data MEM

11 Worst case latency (patient 11)
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thus breaking the energy-area vs. accuracy tradeoff. Buffer-
less processing of data in a closed-loop scheme is employed,
and programmable bandpass filters further decrease the overall
area overhead. The total power can be further reduced by
dynamically controlling the channel activation and powering
down the low-noise amplifiers in unused channels.

A. Energy-Quality Tradeoffs and Scaling

In our proposed gradient-boosting classifier, each tree con-
tributes to roughly 10% of total power (static and dynamic).
Based on the performance curves shown in Fig. 8, we chose to
implement an ensemble of eight trees with a maximum depth
of four, to achieve an average AUC of more than 90% across a
large population of patients with varying number of electrodes,
seizures, and sampling rates. However, not all patients in our
database need as many trees for an accurate discrimination of
their seizures, as depicted in Fig. 14 (top curves). Therefore,
we enabled a programmable on/off control for each tree in
the ensemble, so that upon a patient-specific training phase,
one or more trees could be switched off to save power, with a
minimum impact on quality. In other words, depending on the
difficulty of detection task, the required number of trees can
be switched on to achieve an expected classification accuracy
(e.g., eight trees for patients with hardly detectable seizures,
such as patient 24 in Fig. 14). We use the AUC as our quality
metric, that is widely used to evaluate the predictive accuracy
of a classifier.

Boosting methods generally attain high discrimination by
sequential training of weak classifiers. Here, the XGB attempts
to increase the predictive accuracy by making a more accurate
prediction at each iteration [36]. However, increasing the num-
ber of DTs increases the memory and power requirements of
the system. The proposed XGB hardware is inherently quality-
scalable through programming the number and depth of the
active trees, with a maximum depth set at four. Moreover,
our design offers a unique flexibility to accommodate various
tree structures specific to each patient, to trade the predictive
accuracy with energy (i.e., avoid unnecessary energy dissipa-
tion when accuracy is just enough for a patient). We explored
the hardware parameters of tree count and depth across all
patients, as potential knobs for energy-quality scaling.

As shown in Fig. 14, we observe that in most patients,
a small number of trees are sufficient for a reliable seizure
detection. Indeed, the structure of successive trees are very
similar in most patients, and by switching off the last few
trees, we only observe a slight decrease in predictive accuracy.
While chip area is limited by the required number of trees for
worst case patients, the energy usage can be scaled for cases
with easily detectable seizures. The other alternatives (knobs)
for energy-quality scaling include pruning of trees, or forcing
the algorithm to use energy-aware features by modifying the
cost function (i.e., adding an energy constraint similar to the
delay constraint in Fig. 6). However, we specifically observed
that for most patients, the very last 3—4 trees in the iterative
training process of XGB have a slight impact on performance
and could even cause overfitting. In addition, our proposed
asynchronous approach requires a single FEE in each tree
that freely runs to compute one feature at a time. Thus, its
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Fig. 14: Measured AUC versus number of trees for various patients.

energy is less sensitive to the depth parameter and is rather
controlled by sampling frequency. Thus, we have focused on
the hardware knob of tree count, that is easily integrated into
our power-aware classification prototype.

B. Discussion on Hardware Optimization

Various opportunities to improve the energy and area effi-
ciency of proposed classifier could be explored that remain
as a future work. For instance, the input bit precision in our
chip implementation has been chosen sufficiently high to allow
the detectability of high-frequency features. Given the inherent
error tolerance in machine learning algorithms, the energy
per classification can be reduced by relaxing the quality or
precision of features. For low-power and compact implemen-
tation in particular, reducing the resolution of coefficients in
filter banks, feature thresholds, and leaf values is critical. New
approaches to train decision trees with fixed-point and low-
cost parameters can be investigated, similar to the works that
reduce precision in DNNs [3], SVMs and LRs [2]. Since the
training is usually performed offline, the associated cost is not
critical. Such parameters could further be used as potential
knobs in the proposed energy-quality scaling framework.

Furthermore, DTs can be trained to incorporate the costs of
misclassification (FP or FN) and feature computation (power,
area, delay) in the tree induction process. For example, it is
critical to achieve a high sensitivity in seizure detection, while
keeping the false alarm rate and latency below a tolerable
level. This can lead to development of cost-sensitive decision
trees, where the top-down tree induction algorithm may be
adapted to maintain a pre-specified cost, therefore trading off
the unnecessary accuracy (e.g., very high specificity or low
latency) and energy. Besides, using various design parameters
of DTs, the XGB classifier can be programmed to trade energy
and quality in a structured and dynamic fashion.

VIII. CONCLUSIONS

In this work, we addressed the challenge of designing a
low-power machine learning algorithm for on-chip neural data
classification. We proposed a novel hardware architecture for
a gradient-boosted decision tree model, with a single feature
extraction engine and programmable FIR filter per tree. The
proposed asynchronous tree operation enables efficient classi-
fication of multichannel neural data, with significantly lower
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memory, power and area requirements compared to state-of-
the-art. As a result, this on-chip classifier achieves an energy-
area-latency product that is 27 x lower than prior works, while
processing the highest number of channels. The hardware
architecture, design optimization and tradeoffs are discussed,
and algorithm performance based on proposed model and SoC
measurements is presented. Such classifiers could potentially
allow full integration of processing circuitry with the sensor
array in various resource-constrained biomedical applications.
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