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Using a simple decision tree model, we introduce 

efficient hardware architectures to predict abnormal 

neurological states in various disorders.
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Efficient Feature Extraction and 
Classification Methods in  
Neural Interfaces

Brain disorders such as dementia, epilepsy, migraine, and autism remain 
largely undertreated, but neural devices are increasingly being used for their 
treatment. Such devices are designed to interface with the brain, monitor 
and detect neurological abnormalities, and trigger an appropriate type of 
therapy such as neuromodulation to restore normal function.

A key challenge to these new treatments is to integrate state-of-the-art 
signal acquisition techniques, as well as efficient biomarker extraction and 
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classification methods to accurately identify symptoms, 
using low-cost, highly integrated, wireless, and minia-
turized devices.

Therapeutic Neural Devices 

A general block diagram of a closed-loop neural inter-
face system is shown in figure 1. The neural signals 
recorded by an array of electrodes (intracranial, scalp, 
or other types) are initially amplified, filtered, and dig-
itized. A feature extraction processor is then activated 
to extract the disease-associated biomarkers. Upon 
abnormality detection, a programmable neural stimu-
lator is triggered to suppress the symptoms of disease 
(e.g., a seizure, migraine attack, Parkinson’s tremor, 
memory dysfunction) through periodic charge deliv-
ery to the tissue.

The abnormality detector device must demonstrate 
high sensitivity (true positive rate), sufficient specificity 
(true negative rate), and low latency. It also has to sat-
isfy the safety, portability, and biocompatibility require-
ments of the human body.

An Example of Neuroengineering Treatment: 
Epilepsy

The emerging field of neuroengineering uses engineer-
ing technologies to investigate and treat neurological 
diseases. Epilepsy has been one of the primary targets, 
along with movement disorders, stroke, chronic pain, 
affective disorders, and paralysis (Stacey and Litt 
2008).

Approximately one third of epileptic patients exhibit 
seizures that are not controlled by medications. Neuro-
modulation offers a new avenue of treatment for intrac-
table epilepsy. 

Over decades, research on epilepsy has led to funda-
mental understandings of brain function, with strong 
implications for other neurological disorders. In addi-
tion, because of the severity of refractory epilepsy and the 
need for surgery, human tissue and epileptic EEG data-
sets are largely available. Most therapeutic  neural inter-
faces reported in the literature have therefore focused 
on extracting epileptic biomarkers for  automated sei-
zure detection (Shoaran et al. 2015; Shoeb et al. 2004; 
Verma et al. 2010).

The spectral energy of neural channels in multiple 
frequency bands as well as various time and frequency 
domain features have been used as potential seizure bio-
markers. To improve the power and area efficiency in 
multichannel systems, a spatial filtering technique was 
proposed to precede the seizure detection unit (Shoaran 
et al. 2016b). But in most devices the classification of 
neural features is performed either remotely or by means 
of moderately accurate thresholding techniques.

For one patient-specific support vector machine 
(SVM) classifier (implemented by Yoo et al. 2013), the 
classification processor contributes to a significant por-
tion of chip area and power. To improve the accuracy of 
detection, resource-efficient on-chip learning is becom-
ing an essential element of next-generation implantable 
and wearable diagnostic devices.

Biomarker (feature) 
extraction 

Implantable therapeutic deviceNeural input

Neurological disorder 
detectionNeurostimulation

Signal conditioning, 
digitization

FIGURE 1 General block diagram of a closed-loop therapeutic system for detection and suppression of disabling neurological  symptoms.
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Machine Learning in Neural Devices: 
Scalability Challenges

Conventional classification techniques such as SVMs, 
k-nearest neighbors (KNNs), and neural networks 
(illustrated in figure 2) are hardware intensive and 
require high processing power and large memory units 
to perform complex computations on chip.

Numerous studies show that a large number of acqui-
sition channels are required to obtain an accurate rep-
resentation of brain activity, and that the therapeutic 
potential of neural devices is limited at low spatio-
temporal resolution. It is expected that future interfaces 
will integrate thousands of channels at relatively high 
sampling rates, making it crucial to operate at extremely 
low power. The device must also be very small to mini-
mize implantation challenges.

Despite a substantial literature on machine learning, 
hardware-friendly implementation of such techniques 
is not sufficiently addressed. Indeed, even the simple 
arithmetic operations performed in conventional clas-
sification methods can become very costly with an 
increasing number of channels.

Finally, filter banks and, in general, feature extraction 
units can be hardware intensive, particularly at higher 
frequencies associated with intracranial EEG. Extensive 
system-level design improvement is needed to meet the 
requirements of an implantable device while preserving 
high-resolution recording capability.

Decision Tree–Based Classifiers

We present and evaluate a seizure detection algorithm 
using an ensemble of decision tree (DT) classifiers. The 
general schematic of a single decision tree is shown in 
figure 2.

With only simple comparators as their core building 
blocks, DT classifiers are a preferable solution to reduce 
hardware design complexity. Using a gradient-boosted 
ensemble of decision trees, we achieve a reasonable 
tradeoff between detection accuracy and implementa-
tion cost.

Gradient boosting (Friedman 2001), one of the most 
successful machine learning techniques, adaptively 
combines many simple models to get an improved 
predictive performance. Binary split decision trees are 

FIGURE 2 Schematic of common learning models as potential candidates for hardware implementation.
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commonly used as the “weak” learners. Boosted trees 
are at the core of state-of-the-art solutions in a variety 
of learning domains because of their accuracy and fast 
computation and operation.

Combined with an efficient feature extraction model, 
we show that, with only a small number of low-depth 
“shallow” trees, the boosted classifiers quickly become 
competitive with more complex learning models (Sho-
aran et al. 2016a). These ensembles of axis-parallel DT 
classifiers are excellent candidates for on-chip inte-
gration, eliminating the multiplication operation and 
offering significant reductions in power and chip area.

Performance Evaluation and Hardware Design
As a benchmark, we compare a boosted ensemble of 
8 trees with a depth of 3 to linear SVM, cubic SVM, 
and KNN-3 models proposed for on-chip classification, 
using the following features: line length, time-domain 
variance, and multiple band powers. The proposed 
approach is tested on a large dataset of over 140 days of 
intracranial EEG data from 23 epileptic patients.

Figure 3 (left) shows the average F1 measure of clas-
sifiers. This benchmark is already competitive with its 
peers, and can outperform using larger ensemble sizes. 
It achieves an average seizure detection sensitivity of 
98.3 percent.

Decision trees are very efficient, but also suscepti-
ble to overfitting in problems with high feature space 
dimensionality. To address this, we limit the number 
of nodes in each tree—that is, we design shallow trees 
with a small number of features. These shorter trees are 
also more efficient in hardware and, equally important, 

incur less detection delay. In our simulations, the detec-
tion accuracy is not significantly improved (<0.5 per-
cent) with DT depth values of 4 or more.

Proposed Decision Tree Architecture
We propose the architecture shown in figure 4 (left) to 
implement ensembles of decision trees. At each com-
parison step, only the features appearing in the active 
nodes of trees are needed; the rest of the recording array 
can be switched off to save power.

Because the final decision is made upon completing 
decisions at prior levels, a single feature extraction unit 
can be sequentially used per tree. This results in a sig-
nificant hardware saving, in contrast to SVM, which 
requires all features from the entire array.

For example, the memory required to classify 32-chan-
nel neural data with 8 trees (a maximum depth of 3 and 
threshold resolution of 8 bits) is as low as 100 bytes, 
while SVM and KNN-based arrays would need over 
500 kB of memory. Depending on the specific patient 
and the difficulty of the detection task, additional “sup-
portive” trees can be used to further boost the classifica-
tion accuracy.

The proposed architecture faces a practical chal-
lenge of designing decision trees under application-
specific delay constraints. Given any DT ensemble 
τ = {τ1,…,τk} obtained from our original method, we 
need to ensure that each tree τi satisfies the delay con-
straint: ∑i∈π(h)di ≤ ΔT, where di is the time required to 
compute feature fi, ΔT is the maximum tolerable detec-
tion delay, and π(h) is the set of all predecessors of 
node h. We propose a “greedy” algorithm to solve this 
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FIGURE 3 Comparison of predictive ability of different classification methods with an ensemble of 8 decision trees (DT) of depth 3 
(left), and the classification performance of the asynchronous hardware model compared to a conventional (conv.) DT (right). KNN = 
K-nearest neighbor; LIN = linear; PLY3 = polynomial kernel of order 3; SVM = support vector machine.
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practical constraint by building trees that satisfy the 
delay requirement, as illustrated in figure 4 (right).

However, this algorithm may result in a suboptimal 
solution. We therefore investigate a novel asynchronous 
model to learn from neural data streams, the results of 
which are shown in figure 3 (right). In this model, the 
trees are built with features that maximize accuracy 
regardless of their computational delay. Based on aver-
aged results of completed trees and previous results of 
incomplete trees, decisions are frequently updated (over 
0.5-sec intervals) to avoid long latencies and maximize 
sensitivity. Once completed, longer trees contribute to 
decisions at future time steps.

Conclusions

Based on a simple yet sufficiently accurate (98.3 per-
cent) decision tree model, we introduce efficient hard-
ware architectures and related training algorithms to 
predict the abnormal neurological states in various 
disorders, such as epilepsy, Parkinson’s disease, and 
migraine. Such classifiers may allow the full integration 
of processing circuitry with the sensor array in various 
resource-constrained biomedical applications.
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FIGURE 4 Hardware-level architecture for an ensemble of decision tree classifier with primary and supportive trees (left) and a greedy 
training algorithm to meet the delay constraints (right). A = amplifier; A/D = analog to digital converter; CH = channel; Comp. = 
comparator; k, N = number of features and channels; MUX = multiplexer; R = result.
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