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A Compressed Sensing Parameter Extraction
Platform for Radar Pulse Signal Acquisition
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Abstract—In this paper we present a complete (hardware/
software) sub-Nyquist rate (x13) wideband signal acquisition
chain capable of acquiring radar pulse parameters in an instanta-
neous bandwidth spanning 100 MHz-2.5 GHz with the equivalent
of 8 effective number of bits (ENOB) digitizing performance.
The approach is based on the alternative sensing-paradigm of
compressed sensing (CS). The hardware platform features a
fully-integrated CS receiver architecture named the random-mod-
ulation preintegrator (RMPI) fabricated in Northrop Grumman’s
450 nm InP HBT bipolar technology. The software back-end con-
sists of a novel CS parameter recovery algorithm which extracts
information about the signal without performing full time-domain
signal reconstruction. This approach significantly reduces the
computational overhead involved in retrieving desired information
which demonstrates an avenue toward employing CS techniques
in power-constrained real-time applications. The developed tech-
niques are validated on CS samples physically measured by the
fabricated RMPI and measurement results are presented. The
parameter estimation algorithms are described in detail and a
complete description of the physical hardware is given.

Index Terms—Compressed sensing (CS), indium-phosphide,
parameter estimation, random-modulation pre-integration
(RMPI).
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I. INTRODUCTION

A PRINCIPAL goal in the design of modern electronic
systems is to acquire large amounts of information quickly
and with little expenditure of resources. In the wireless tech-
nology sector, the goal of maximizing information throughput is
illustrated by the strong interest in radio-frequency (RF) sensing
and spectral applications that require instantaneous bandwidths
of many gigahertz. Such systems have applications ranging from
scientific instrumentation to electronic intelligence. Although
some solutions already exist, their large size, weight, and power
consumption make more efficient solutions desirable.

At present, realizing high bandwidth systems poses two pri-
mary challenges. The first challenge comes from the amount
of power required to operate back-end analog-to-digital con-
verter (ADCs) at the necessary digitization rate. This issue is
so significant that the remaining elements of the signal chain
(RF front-end, digital signal processing (DSP) core, etc.) are
often chosen based upon an ADC that is selected to be com-
patible with the available power budget [1]. The second chal-
lenge comes from need to store, compress, and postprocess the
large volumes of data produced by such systems. For example,
a system that acquires samples at a rate of 1 Gs/s with 10 bits
of resolution will fill 1 Gb of memory in less than 1 s. In light
of the ever growing demand to capture higher bandwidths, it
would seem that a solution at the fundamental system level is
needed to address these challenges.

Some promise for addressing these challenges comes from
the theory of compressed sensing (CS) [2]-[6]. CS has recently
emerged as an alternative paradigm to the Shannon-Nyquist
sampling theorem, which at present is used implicitly in the de-
sign of virtually all signal acquisition systems. In short, the CS
theory states that signals with high overall bandwidth but com-
paratively low information level can be acquired very efficiently
using randomized measurement protocols. The requisite sam-
pling rate is merely proportional to the information level, and
thus CS provides a framework for sub-Nyquist rate signal ac-
quisition. As we discuss further in Section II, aliasing is avoided
because of the random nature of the measurement protocol.

The emergence of the CS theory is inspiring a fundamental
reconception of many physical signal acquisition and pro-
cessing platforms. The beginning of this renaissance has
already seen the redesign of cameras [7], medical imaging
devices [8], and RF transceivers [9]-[11]. However, the bene-
fits of CS are not without their costs. In particular, the task of
reconstructing Nyquist-rate samples from CS measurements
requires solving an inverse problem that cannot be addressed
with simple linear methods. Rather, a variety of nonlinear
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algorithms have been proposed (see, e.g., [12]-[14]). While
the speed of these methods continues to improve, their com-
putational cost can still be appreciably greater than many
conventional algorithms for directly processing Nyquist-rate
samples. This matter of computation, if not addressed, poten-
tially limits the widespread application of CS architectures in
power constrained real-time applications.

In this paper, we address these issues by presenting a com-
plete, novel signal acquisition platform (both hardware and soft-
ware) that is capable—in certain applications—of estimating
the desired signal parameters directly from CS measurements
[15]. In the spirit of compressive signal processing [16], our
approach takes the principal motivation of CS one step further
and aims to eliminate the overhead of first reconstructing the
Nyquist-rate signal samples before applying conventional DSP
techniques for parameter extraction.

On the hardware side, we present a fully integrated wide-
band CS receiver called the random-modulation pre-integrator
(RMPI) [9], [10], [12], [17]. We fabricate this device with
Northrop Grumman’s 450 nm InP HBT bipolar process. On
the software side, we focus on signal environments consisting
of radar pulses and present a novel algorithm for extracting
radar pulse parameters—carrier frequency (CF), phase 6,
amplitude Aq, time-of-arrival (TOA), and time-of-departure
(TOD)—directly from CS measurements. (The exact signal
model is described in Section IV.)

Our complete system is capable of recovering radar pulse pa-
rameters within an effective instantaneous bandwidth (EIBW)
spanning 100 MHz-2.5 GHz with a digitizing performance of
eight effective number of bits (ENOB). We validate the system
by feeding the fabricated RMPI with radar pulses and using the
physically digitized CS measurements to recover the parame-
ters of interest.

An outline of this paper is as follows. Section II provides a
brief background on CS and a description of the high-level op-
eration of the RMPI, Section III provides a complete descrip-
tion of the hardware platform used to encode the CS samples,
Section IV provides details of the parameter estimation algo-
rithms, and Section V presents measurement results.

II. THE RMPI

A. Compressed Sensing

CS at its heart relies on two concepts: sparsity and incoher-
ence [5]. Sparsity captures the idea that many high-dimensional
signals can be represented using a relatively small set of coeffi-
cients when expressed in a properly chosen basis. Incoherence
captures the idea of dissimilarity between any two representa-
tions; two bases are said to be incoherent if any signal having
a sparse expansion in one is dense in the other. An example of
an incoherent pair comes from the classical time-frequency du-
ality. A sparse signal in time—e.g., a Dirac-delta function—has
a dense spectrum. Similarly, a single tone is sparse in the Fourier
domain but dense in time.

The key observation underlying CS is that when a signal is
sparse in some basis, it can be acquired by taking a small number
of measurements that are incoherent with its sparse basis [18].
Often this incoherence is achieved by incorporating randomness

into the measurement process. There are many possibilities for
implementing incoherent random measurements; a convenient
and admissible choice for hardware implementation is to cor-
relate the input signal (in our case, a time-windowed version of
the input signal) with a pseudo-random binary sequence (PRBS)
[4]. We refer the reader to [5] and references therein for addi-
tional information about the mathematical theory of CS.

B. A Brief History and Description of the RMPI

Almost simultaneously with the introduction of CS [2], a
number of CS-based signal-acquisition architectures were pro-
posed. Some of the more well-known proposals include: the
random demodulator (RD) [17], [19], [20], the random-modula-
tion preintegrator (RMPI) [9], [10], [21], the nonuniform sam-
pler (NUS) [4], [22], random convolution [23], the modulated
wideband converter (MWC) [24], and many others [25] (for a
comprehensive overview see [12]). The basic function that all of
these systems implement is to correlate of the input signal ()
with an incoherent, randomly generated set of “basis” elements
over a fixed time window.

The RMPI is one of the most direct physical implementa-
tions of the CS concept; it is composed of a parallel set of RDs
driven by a common input (see Fig. 1(a), which is described
more fully in Section III). Each RD is driven by a distinct PRBS
p(t); it uses this PRBS to modulate the incoming signal x(f),
integrates the result over a time interval of duration 7}, and
then digitizes the output at rate fapc = 1/Tiw € fayq. In
our RMPL, Tiyy = 52 - Tyyq With fuyq = 1/Thyq = 5 GHz.
Thus, fapc = 1/(52 - Tpyy) = 96.154 MHz; the aggregate
back-end sampling rate f; = 384.616 Ms/s, which corresponds
to undersampling the Nyquist rate by a factor of 13. Aliasing is
avoided in this measurement scheme because 1) the modulation
with the PRBS will spread the spectrum of any tone (including
high-frequency ones) across the entire band so that one can ef-
fectively subsample, and 2) the input signal is again assumed to
obey some model (aside from merely being bandlimited).

Letting = denote a time-windowed vector of Nyquist-rate
samples of the input signal z(t), we can implicitly model the
RMPI measurement process as multiplication of = by a matrix
® having 13x fewer rows than columns. Each row of this
matrix corresponds to a portion of the PRBS sequence used in
a specific integration window from a specific channel. As an
example, if we consider a sample vector z of length N = 1040,
the matrix ® will be block-diagonal, with each block having
four rows (representing the parallel operation of the four
channels) and Tin /Tnyq = 52 columns (representing an inte-
gration window of 52 Nyquist bins). The rows of each block
contain £1 entries, and the overall matrix will be composed of
NTNyq /T = 20 blocks (one for each integration window).
Denoting the vector of measurements as ¥, the RMPI mode of
acquisition can be modeled as y = ®2 where ® € R3V* 1040

We point out that high-fidelity recovery/extraction of infor-
mation from CS measurements requires precise knowledge of
the system transfer function ®. Thus, practical deviations from
the block-diagonal 1 model described above must be taken
into account. For the measurements presented in this paper, we
construct a model of our system’s ® matrix by feeding in sinu-
soidal tones and using the output measurements to characterize
the system’s impulse response.
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common-mode voltage. The chip was designed for a full-scale
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Fig. 1. (a) Simplified block diagram of 4-channel RMPI. The analog-signal
path of each RD channel is identical, however the timing signals they receive
in operation are different. (b) Functional diagram of the mixer and integrator
circuits. (a) System block diagram. (b) RD channel block diagram.

III. HARDWARE IMPLEMENTATION DESCRIPTION

A. Architecture and Operation

The RMPI presented in this work was realized with the
proprietary Northrop Grumman (NG) 450 nm InP HBT bipolar
process [26]. The process features a four-layer metal stack with
an fr and fy.x > 300 GHz. Fig. 1(a) shows the block diagram
of the integrated circuit (IC) containing the input buffer driving
the common node of the four RD channels and the timing gen-
erator. The timing generator is responsible for generating the
pseudo-random bit sequences (PRBS) and the clocking wave-
forms to coordinate the track-and-hold (T/H) and integration
operations. All analog and digital signal paths are implemented
differentially to improve common-mode noise rejection and
increase linearity of the system. The analog path up to the
integrator was designed for a 2.5 GHz bandwidth. The ensuing
integration reduces the bandwidth containing significant energy
content. The circuits following the integrator are designed to
meet the settling requirements of the reduced bandwidth. A
5 GHz master clock reference (CLKin) is used to toggle the
PRBS generators and is chosen to be the Nyquist-rate of the
input bandwidth [12], [17]. The T/H operates at 1/52 the master

input amplitude of 0.5 V,, differential and 1 V,,, differential
output. In operation, the RMPI circuit takes the analog input
signal, buffers it, and distributes the buffered signal to each
of the four channels. In each channel, the signal is multiplied
by one of four orthogonal PRBS—each of which is a 3276 bit
long Gold code [28]. The resulting product is integrated by one
of two sets of interleaved capacitors for exactly one frame (52
CLKin cycles). At the end of the integration period the signal is
sampled and then held for 26 CLKin cycles to allow the external
ADC to digitize the signal for postprocessing. Immediately
after the signal is sampled, the capacitor begins discharging
and the second capacitor begins integrating the next frame [see
Fig. 1(b)]. The interleaved integration capacitors are used to
avoid missing frames due to the reset operation. Additionally,
the sampling instants for each channel are staggered to create
more diversity in the windowed integrations obtained.

B. Analog Signal Path

The input buffer is a differential pair with emitter degener-
ation and 50 € termination at each single-ended input. It has
a gain of 3 dB, a 2.5 GHz bandwidth, 70 dB SFDR, and a
full-scale differential input amplitude of 0.5 V,,,. The random
modulation is performed by a standard differential Gilbert
mixer with the PRBS generator driving the top two pairs and
the analog input driving the bottom differential pair. Emitter
degeneration is used on the bottom differential pair to improve
linearity. To reduce noise, the mixer was designed to have
about 20 dB gain to compensate for the attenuation from the in-
tegrator. The output of the mixer is integrated using interleaved
switched capacitors as shown in Fig. 1(b) and Fig. 2 and has
a pole/cutoff frequency located at 12.5 MHz. Diode switches
route the mixer output current to the integration capacitor, read
out the capacitor voltage, and reset it to zero at the end of a
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Fig. 3. Simplified block diagram of PRBS/timing generator. Shown are (4)
quadrature clocks for the S/H and (4) control signals for the interleaved capaci-
tors. Combinational logic is used to prevent the illegal start up condition of the
PN generators and to generate divide by 52 and divide by 104 used as control
signals in the S/H and in the interleaved integrators respectively.

cycle. Operation of the switched integrator is controlled by
a capacitor select signal (SEL). When SEL is asserted Cy4 is
reset and Cp acts as the integrating capacitor, when SEL is
de-asserted the roles of Cs and Cgp are reversed. At the end
of each integration cycle (one frame = 10.4 ns), the output of
the integrator is sampled by the T/H and held for 5.2 ns. This
ensures that the external ADC has enough time to digitize the
held voltage.

The T/H was implemented using a switched emitter fol-
lower topology with gain ~1. To minimize the hold-mode
feed-through, small feed-forward capacitors were inserted [29].
The switched emitter follower was chosen in favor of the more
conventional diode bridge because of its smaller footprint and
comparatively low parasitic capacitance. The amplifier after the
T/H has a gain of 2. In addition to emitter degeneration, diode
connected transistors are used in the output load to cancel the
input differential pair V. modulation and improve linearity.
The output driver was designed to be dc-coupled to the external
ADC and has 70 dB SFDR and a 1 V},, swing.

C. PRBS and Timing Generator

A master clock is applied to CLKin, from which all required
timing signals are generated. The input clock buffer was biased
with a relatively high power to reduce jitter. In addition, it has
four separate output emitter followers to mitigate the deleterious
effects of cross-talk on the clock jitter. Each emitter follower
provides a low jitter signal to reclock the PRBS input before it
is mixed with the RF input in each channel.

The PRBS signals are generated with two 6 bit PRBS gener-
ating linear-feedback shift-registers (LFSR(s)) [30]. One PRBS
generator (PNOA in Fig. 3) is programmed to cycle every 52
CLKin cycles while the second (PN6B in Fig. 3) is allowed to
cycle through all 63 states. The 2 PRBS generator outputs are
combined to generate four orthogonal 52 x 63 = 3276 bit long
Gold code sequences. PN6A is also used to generate the T/H
clocks (divide by 52) and select signal (divide by 104) for the
switched capacitor integrator. Both PN generators also output
a sync pulse used to synchronize the system. The output pulse
from PN6B is reclocked with the pulse from PN6A to produce

RD 2

PRBS/
Timing
Generator

RD 4

Fig. 4. RMPI IC die photo. Die size is 4.0 mm X 4.4 mm.

a sync pulse that is 52 CLKin cycles long once every 3276
cycles. The synchronization pulse is essential to provide pre-
cise knowledge of the chipping sequence used in each integra-
tion window. This relative alignment information is crucial for
signal-recovery and parameter estimation.

CLKin and the RF input are located on opposite sides of the
chip to minimize coupling. Special attention was paid to the
routing of the PRBS, T/H clocks, and select signals to mini-
mize clock/data coupling among the four channels. A simplified
block diagram of the PRBS/timing generator is shown in Fig. 3.
The timing generator block was designed to operate at speeds
in excess of 5 GHz and consumes 2.8 W when operated at the
designed rate.

D. Performance Analysis

Simulation validation was done by performing tran-
sient-based two-tone inter-modulation distortion simulations
in the Cadence design environment. Noise simulations were
performed using the periodic steady-state (PSS) mode of
spectre. The RMPI sampling system, including the off-chip
ADCs consumes 6.1 W of power. We point out that this system
was designed as a proof-of-concept and was not optimized for
power. Thus, caution should be used when comparing the CS
system in this work to conventional counterparts. For example,
the use of an InP process in this work leads to power penalties
compared to the CMOS RMPI (which consumes =20.5 W) re-
ported in [9] and [10], which is also similarly unoptimized, due
to the availability of static logic. A die photo of the fabricated
chip is shown in Fig. 4.

IV. PULSE-DESCRIPTOR WORD EXTRACTION

Having described the hardware, we now present algorithms
for detecting radar pulses and estimating their parameters, re-
ferred to as pulse-descriptor words (PDW), from RMPI sam-
ples. The detection process is based on familiar principles em-
ployed by detectors that operate on Nyquist samples. Our algo-
rithms use a combination of template matching, energy thresh-
olding, and consistency estimation to determine the presence of
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pulses. By using all three of these methods, we gain robust de-
tection at the cost of a number of tunable parameters that are
set based upon the specific application and sensing equipment.
The general procedure consists of three steps. First, we estimate
the carrier frequency and energy of a potential pulse segment at
various time shifts. Second, based on consistency in frequency
estimates and large enough pulse energies, we apply criteria to
determine if a pulse is present. Finally, for detected pulses we
use our parameter estimation methods to refine our carrier fre-
quency, amplitude, phase, time-of-arrival, and time-of-depar-
ture estimates.

The remainder of the section elaborates on the procedure and
is arranged as follows. First, we describe our methods of para-
metric estimation, focusing in particular on carrier frequency
estimation. After describing how we can reliably estimate the
carrier frequency of a signal from compressive measurements,
we then explain how we use such estimations to form a detection
algorithm that jointly uses energy detection and consistency of
our frequency measurements. We then describe how we perform
parametric estimation on compressive samples while simulta-
neously removing a band in which a known interfering signal
is present. Finally, we combine the detection algorithm we have
formulated with the cancellation technique to present an algo-
rithm capable of detecting multiple overlapping pulses.

A. General Parametric Estimation

Our general parameter estimation problem can be stated as
follows. We consider signals z(#) drawn from one of a col-
lection of (low-dimensional) subspaces {S,, } indexed by a pa-
rameter set « = (aq,a,...,ak). Given the measurements
y = ®lzg] + noise, we search for the set of parameters corre-
sponding to the subspace which contains a signal which comes
closest to explaining the measurements 3. We solve

v = arg min { min [y — ®])2 ) . 1
= arguin i - #1213 )

The inner optimization finds the signal in S,, that is most consis-
tent with the measurements for a fixed «; the outer optimization
compares these best fits for different cv.

The inner optimization program, which is the classical
“closest point in a subspace” problem, has a well-known closed
form solution as it is easily formulated as a least-squares
problem.

Let thg 1(t), e 2(t), ..., ta,a(t) be a basis for the space S,
meaning that

.’L‘(](t) S Sa
= 20(t) = a1ua 1(t) + asua 2(t) + - - - + apua.a(t)

for some unique a1, as,...,aq € R. If we define V,, to be the
M x d matrix containing the inner products between each pair
of RMPI test functions ¢,,(#) and basis functions v, ;(t)

(D1, ua1) (D1, ua2) (P1, Uad)
(b2, ua1) (P2, uq2) (P2, Ua,d)

‘/a = (2)

(St e a)

<¢M,.Ua,1> <¢1,’;La,2)

then we can rewrite (1) as

vyl
Y
2

(81

-1

Yy — Va (VT

e

Va)

& = argmin
(a3

arg min || (I — Pu)yll5 3)

where P, = V, (VT Va)—lvaT is the orthogonal projector onto
the column space of V,,. It is worth mentioning that when the
measurement noise consists of independent and identically dis-
tributed Gaussian random variables, the result & in (3) is the
maximum likelihood estimate (MLE). When the noise is cor-
related, we may instead pose the optimization in terms of a
weighted least squares problem.

In Sections IV-B and IV-C below, we will discuss the partic-
ular cases of frequency estimation for an unknown tone, and
time-of-arrival estimation for a square pulse modulated to a
known frequency. In both of these cases, we are trying to es-
timate one parameter and the underlying subspaces S,, have di-
mension d = 2. Moreover, the functional ||{(] — Pa)y||r§) can be
efficiently computed over a fine grid of values for « using the
fast Fourier transform (FFT).

When there are multiple parameters, performing the joint
minimization over e« = (a1, 2,...) can be computationally
prohibitive. In Section IV-D, we present a heuristic algorithm
for estimating the key parameters of a Doppler pulse (carrier
frequency, time-of-arrival, and pulse length) that operates by
looking for consistent frequency estimates over consecutive
windows of time. The frequency and time-of-arrival estimators
play a central role in this algorithm.

In Section IV-F, we show how the algorithm can be modi-
fied to accommodate overlapping pulses and strong narrowband
interferers.

B. Carrier Frequency, Amplitude, and Phase

In this section, we consider the task of estimating the fre-
quency of a pure (Doppler) tone from the observed RMPI mea-
surements. The algorithms developed here play a central role in
the detection process as well, as the frequency estimation pro-
cedure is fundamental to determining the presence of pulses.
We also describe how to estimate the amplitude and phase once
the carrier frequency (CF) is known. A similar technique can be
used to estimate the amplitude and phase while estimating the
time of arrival (TOA) and time of departure (TOD) as well.

For our CF estimation task, we suppose that we observe an
M -vector y (consisting of a concatenation of all samples from
the RMPI device over a certain interval) given by y = ®[x] +
noisc, where xy consists of N Nyquist samples of a sinusoid

Ty [’IL] = A() cos(27rf0tn + 9())

(12

t, =
" f nyq

and fpyq is the Nyquist frequency. The amplitude Ag, phase
6y, and frequency fy of the sinusoid are a priori unknown, and
we make the implicit assumption that the TOA corresponds to
n = 1 and the TOD corresponds to n = N.
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Fig. 5. Plot of the energy function W (f) for measurements derived from a
noisy Doppler tone at 1.4567 GHz over (a) the entire range of allowable fre-
quencies and (b) frequencies close to the true CF. In (a) we see that the energy
functional is clearly maximized in an area near the true CF, and (b) shows that
the maximum of the energy function occurs at 1.4571 GHz. For this example,
we used a total of 3315 Nyquist samples with a sampling rate of 5 GHz, so our
intrinsic frequency resolution is on the order of 5 GHz /3315 ~ 1.5 MHz. The
estimate of the carrier frequency is well within this resolution.

It is convenient to rewrite zg as a weighted sum of a cosine
and sine with zero phase

zo[n] = ay cos(2x foty,) + az sin(27 foly,) 4)

where we can relate a1, as to A, f by realizing that they are the
real and complex parts of the phasor Ac?? : a; + jas = Ae??.
The subspaces Sy we search are thus spanned by two vectors
and uo with ug[n] = cos(27 fot,,) and uz[n] = sin(2w fot,,).
Since we have discretized the signal z(¢) through its Nyquist
samples, our measurement process is modeled through a matrix
@, the rows of which are the basis elements ¢y,. For a given fre-
quency f, we define V; as in (2) and solve (3) to obtain the MLE
estimate of the basis expansion coefficients in the subspace Sy.

Rather than dealing with continuously variable frequency, we
define a fine grid of frequencies between 0 and f.y/2. As an
equivalent alternative to minimizing the outer optimization in
(1), for each f% in the grid (and corresponding subspace Sy ) we
may instead compute the quantity

W, = ”Vf/eo‘f;“z
Iyl

and choose the frequency fj, that maximizes W,.

In practice, since we obtain values for Wy, on a grid of fre-
quencies, we can realize tangible gains by treating these values
as samples of a continuous function W{ f) and interpolating in
between the samples of W{ f) once the maximum has been lo-
calized; that is, we can “super-resolve” W{f) using cubic in-
terpolation. Fig. 5 illustrates the function W( f) for an example
Doppler tone.

Once the carrier frequency is estimated as f , we estimate the

tone amplitude as A = \/ (o f)f + (« f)§ and the tone phase as

f = tan’l((a})g/(a})l).
C. Time of Arrival/Departure

Next we describe how the TOA of a pulse can be estimated.
We now assume that we have RMPI samples of a pure tone at
a known frequency windowed by a step function. That is, we

Tmax: 3030

Troa =302 2
1.5
1.5
1 1
0.5 05
0 0
0 1000 2000 3000 2600 2800 3000 3200
Time-of-Arrival (Nyquist samples)  Time-of-Arrival (Nyquist samples)
(@) (b)

Fig. 6. Plotofthe energy function £( 7) for measurements derived from a noisy
Doppler tone at 1.4567 GHz arriving at Nyquist sample n = 3028 over (a) the
entire range of sample indices and (b) sample indices close to the true TOA. In
(a) we see that the energy functional is clearly maximized in an area near the
true TOA, and (b) shows that the maximum of the energy function occurs at
n = 3030. Since the sampling rate for this example is 5 GHz, this corresponds
to an error of 400 ps.

observe an M -vector y = ®[xp] + noise, where zp[n] has the
form

—79) - Ag cos(27 fol, + 0g)
n=1,...,.N 5

xoln] = p(t,
_on
l fl’lyq

and p(-) is the unit step, p(t) = 1 for ¢ > 0 and is zero for
t < 0. While we assume that the frequency f is known (or has
been estimated as in Section IV-B), the amplitude, phase, and
TOA 7 are unknown. The processes we describe are perfectly
analogous for TOD estimation if we consider a “flipped” version
of zg[n].

As in (4), we can write x as a weighted sum of a windowed
sine and cosine

zo[n] = arui[n] + azusa(n]
up[n] = p(t, — o) cos(27 fotn)
ug[n] = p(t, — 70) sin(27 fotn).

Then for any given candidate TOA 7, the subspace S, is
spanned by the vectors

uri1[n] = plt, — 7) cos(27 fot,)
and
ur 2] = p(tn — 7)sin(27 fot,).

We can again construct the matrix V, of (2) and complete the
MLE estimate of o, by solving (3) and subsequently (1)
Again, rather than deal with continuously variable 7 we de-
fine a grid of times 7. In practice, using the grid of Nyquist
sample locations 7, = % is sufficient. As in the case of car-
rier frequency, rather than choose the subspace with the smallest
value of the norm in (1), we instead solve (3) for each grid point
and then select the subspace Sy, yielding the largest value of

Vs, Gr |1
Bl = e

which is an equivalent solution. We may once again super-re-
solve by treating these values as samples of a continuous func-
tion. Fig. 6 illustrates the function £(7) for an example Doppler
tone.
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Fig. 7. Fraction of measurement energies that are explained by frequencies up
to 2.5 GHz for the case where (a) there is a 1.581 GHz tone and noise present
and (b) there is only noise present. The noise energy is equally spread out over
the band, where the tone energy is concentrated at one frequency.

D. Pulse Detection

With our estimation techniques explained we next describe
a pulse detection algorithm that takes a stream of RMPI sam-
ples and classifies each as either having a “pulse present” or
“no pulse present.” We start by assuming that only one pulse is
present at any given time. In the next section, we will describe
an extension of this algorithm that can account for multiple si-
multaneous pulses.

We model the pulses we are trying to detect as continuous
functions of the form

Pr(t) = Agwr(t, Tho, Th1) cos(27 frot + 61)

where A, is the pulse amplitude, 7o the TOA, 741 the TOD,
wr(t, Tko, T1) is the rectangular window wg(%, Tk, Te1) =
w(t— 7o) —u(t—7r1), fro the CF, and 8, the phase. We assume
that the input to our acquisition system consists of the Nyquist
samples of some number of these pulses; that is

z[n] = ZPk("T-s)
k

where 7 is the sampling period. The vector of RMPI measure-
ments we receive is the result of a linear matrix ® applied to this
input together with additive noise: y = ®2z+ noise. Our task is
to determine how many pulses are present and to estimate the
parameters of each pulse we find.

We use the CF estimation method of Section IV-B as a
building block. The general approach of the detection algo-
rithm is to divide the RMPI samples up into overlapping blocks
and estimate how well the measurements corresponding to each
block can be explained by the presence of a single tone. This is
done by assuming a pulse is present in each block, estimating
its CF, and determining how well the observed measurements
agree with measurements generated by this pulse. As is shown
in Fig. 7, if a pulse is indeed present at the estimated CF, it
should account for a reasonably large portion of the measure-
ment energy.

Once we obtain CF estimates, we look for consistency from
block to block. If neighboring blocks have CF estimates that
are: consistent in value and account for a considerable portion
of their measurement energies, then we declare a pulse present.
If the CF estimates vary across neighboring blocks or contain
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Fig. 8. Carrier frequency estimates and measurement energy percentages for
block shifts of RMPI measurements. In this simulation, several pure-tone pulses
are present at various times. The blocks corresponding to RMPI samples that
cover the time support of the pulse contain consistent CF estimates which ac-
count for a reasonably large portion of the RMPI measurement energy. When
pulses are absent, the CF estimates are erratic and account for considerably less
energy in the measurements.

insufficient energy in a single frequency, we consider there to
be insufficient evidence that a pulse is present. Fig. 8 illus-
trates consistency in frequency estimation and energy propor-
tion when pulses are present. In practice, the blocks near the end
of a pulse may account for a smaller percentage of their mea-
surement energies with a single tone, since they may contain
some RMPI samples that correspond only to noise. To coun-
teract this effect we use a weighted average across blocks con-
sistent in their CF estimates.

Once we have obtained pulse detections, we can further re-
solve their parameters. For example, suppose we have detected
a pulse that starts at RMPI sample index & and has length P. We
create a vector with the following RMPI samples:

Ys = [yk—P/Z Yk-pP/2+1 yk+3P/2—1]T
While we are uncertain of the exact TOA and TOD of the
pulse, the middle portion of the detected pulse (corresponding
to samples &k + P/4 to k + 3P/4) almost certainly contains
only samples where the pulse is active. We use these samples
to refine and super-resolve our carrier frequency estimate.
Empirically, we find that our initial estimates for the TOA
and TOD can often dramatically under/overestimate the correct
values. Accordingly, we use the samples k— P/2 to k+P/2—1
to refine and super-resolve our TOA estimate and & + P/2 to
k + 3P/2 — 1 to refine and super-resolve our TOD estimate.
For longer pulses (large P), this means that we check a larger
number of potential locations for our TOA and TOD estimates.
We could instead fix a certain number of samples before and
after each pulse detection to check, invariant of the detected
pulse length, but we have found experimentally that making
the search length dependent on the detected pulse length results
in more accurate estimation. Once the TOA, TOD, and CF
estimates have been refined, we calculate our amplitude and
phase estimates.

Supposing we have a stream of RMPI measurements
Yy1,Y2, - -, yp over some time period, where each y; is a vector
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of m RMPI samples at a given sample time, the complete
detection algorithm is outlined in Algorithm 1.

Algorithm 1 RMPI Pulse Parameter Extraction Algorithm

1: Choose a set of block lengths, each of which corresponds
to a certain number of RMPI samples per channel.

2: For fixed block length L and for each sample time
k=1,...,B, find the measurement vector 7; containing
the samples from time s — (L — 1)/2,..., k+ (L —1)/2
and the corresponding portion of the measurement matrix
Dy

3: Estimate the CF for each block by following the procedure
in Section IV-B, calling the frequency estimate Fj, and
the corresponding fraction of the energy it accounts for
Pe = P(F)/|lill3.

4: Determine for which blocks |Fy. — Fj _1] is below some
threshold. Call each sequence of blocks with consistent
frequency estimates a segment.

5: In each segment, take a weighted average of the P
values. Keep all segments for which this average exceeds
a certain threshold.

6: Repeat steps 2—5 for different values of L, creating a list
of potential pulse segments for each block length.

7: Merge any segments that are close together in time and
have similar CF estimate.

8: Keep only the remaining segments in the merged list that
are longer than a predetermined minimum signal length.

9: Super-resolve the amplitude, phase, TOA, and TOD
can then using the techniques in Section IV-B and
Section I'V-C.

E. Complexity

For the measurement system we consider, ® consists of
shifted repetitions of a matrix ®; that produces 63 separate
four-channel RMPI samples (for a total of 252 rows). For CF
estimation, we can precompute the product Vy = U, for
each frequency f in our grid by taking the real and imaginary
parts of the FFT of each row of ®. In fact, since ® contains
repetitions of &y we need only take the FFT of the 252 rows
of ®,, which we may then shift through complex modulation.
This calculation does not depend on the measurement data, and
therefore can be done offline as a precomputation.

For each window length L (typically between 5-11 RMPI
samples) and each window shift, we have to compute P;jj; for
each f in the grid. For a given frequency f, we have precom-
puted the matrix Vy. We have 4L samples (since there are 4
channels per measurement), so Vy is 4L x 2 and V]T Vyisa2 x
2 system. We can explicitly invert VfT Vy using the 2 x 2 ma-
trix inverse formula, and all other calculations involve a small
number of 4 L-point inner products. The number of frequencies
we test is proportional to the number of Nyquist samples NV,
and thus the cost of the frequency estimation for each sliding
window shift is O(N L). Since the number of window shifts is
equal to the number of RMPI samples, this is our per-sample

computational cost. If we use multiple window lengths, our
complexity is O(N >_, L;).

F. Cancellation and Multiple Pulses

In this section, we focus on how to remove contributions from
certain frequency bands in the RMPI measurements. This allows
us to remove the effects of interferers that occupy a known, fixed
frequency band. It also allows us to remove the contributions of
pulses that we have already detected in order to detect additional
pulses that may occur at simultaneous points in time.

We assume that we have a signal interfering with the under-
lying signal whose parameters we wish to estimate, and that this
interferer has energy only in a specific, fixed, and known fre-
quency band. Our procedure for nulling the interfering signal in-
volves the computation of discrete prolate spheroidal sequences
(DPSS) [31],[32].! A DPSS is essentially a set of functions that
can best express signals of specified duration whose frequency
content is restricted to a certain bandwidth. These can be mod-
ulated to be centered at any frequency, and thus can serve as
a basis for compact signals whose energy occupies a specific
band.

Suppose we have a DPSS with R elements that serve as a
basis for signals of length N. We can express the DPSS as an
N x R matrix V, whose R columns are the elements of the
sequence. Then the interfering signal =z can be written as a linear
combination of these elements z = Vu for some a € R¥. The
contribution from the interfering band in a set of measurements
can be modeled as

Yy = dVa.

Then we can estimate the portion of the measurements ¥ that
correspond to frequency content outside the interfering band as

g=(1-ov(vTeTev) 'vTeT)y = vy,

The operator ¥ can be used to remove the contributions of the
interfering band in the measurements 3 when we run our esti-
mation methods. This allows us to effectively operate as if the
interferer is absent. The matrix W does not depend on the mea-
surements ¢ but merely the RMPI matrix ®, and therefore can
be precomputed. Fig. 9 shows how the use of the nulling oper-
ator aids in removing interfering bands.

We can use similar concepts to detect multiple overlapping
pulses. After the detection algorithm of Section IV-D, we can
run a second pass of the algorithm. During this second pass,
when we calculate the CF estimates for each block we do so by
first constructing a nulling operator ¥y, that cancels the contri-
butions of any of the previously detected pulse segments that are
within the block and then perform CF estimation using the mod-
ified measurements Wy, 7. When we compute the metric P(F},),
we use Wy, in place of ¢ so that the quantity expresses the
fraction of the energy of the potential pulse relative to the nulled
measurements.

The nulling operators ¥, that we construct will cancel a band,
rather than a single frequency. The bandwidth and block length
affect the number of elements in the DPSS that we require to

IThese are also known as Slepian sequences.
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Fig. 9. Fraction of measurement energies that are explained by frequencies up
to 2.5 GHz for the case where (a) no nulling is used and there is strong interfering
signal between 1.976 and 2.026 GHz and (b) the nulling operator is used to
cancel out the interfering band. The nulling operator allows us to estimate the CF
of the underlying tone, which is 1.367 GHz. In (b) the energy in the interfering
band has virtually disappeared.
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Fig. 10. Stages of the pulse detection and parameter estimation algorithm for
overlapping pulse data: (a) source pulses; the pulse heights indicate their ampli-
tude and the color of the pulse is reflective of the CF of the pulse, with red closer
to 2.5 GHz and blue closer to 0 Hz; (b) CF estimates for blocks using 5 RMPI
samples; (c) segments detected based on consistent CF estimates for blocks of
size 5 with no phase or amplitude estimation; (d) CF estimates for blocks of size
9; (e) segments detected based on consistent CF estimates for blocks of size 9
with no phase or amplitude estimation; (f) the merged segments; (g) the merged
segments after the second pass is completed; (h) the detected pulses with refined
estimates of their parameters.

cancel within a certain accuracy. Since the DPSS is designed to
cancel a band rather than a single frequency, we must make an
assumption as to how close in CF two simultaneously overlap-
ping pulses are allowed to be; for our 5 GHz system we assume
that overlapping pulses are at least 10 MHz apart in their carrier
frequencies. Fig. 10 shows an example of the two-stage detector
for overlapping pulse data.

The additional cost introduced by nulling detected pulses
is dominated by the computation of the DPSS functions. This

Fig. 11. Assembled RMPI IC/digitizer interface. The board is 5 in X 5 in. The
ADC board has 4 12 bit ADCs with output bits routed to 4 data-connectors
that are acquired with a logic analyzer. (a) RMPI IC Mount. (b) RMPI digitizer
board.
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Fig. 12. Block diagram of RMPI test setup.

TABLE 1
MAXIMUM, MINIMUM, AND STANDARD DEVIATION OF ESTIMATION ERRORS
FOR CF, TOA, AND TOD OVER 686 TRIALS (1 Frame = 1/fapc = 10.4 ns
IS THE LENGTH OF ONE INTEGRATION WINDOW)

CF TOA TOD
(MHz) (Frames) (ns) (Frames) (ns)

Max. 1.451 4.176 43.43 24.55 255.32
Error
Min.
E 7.68e-4 8.15e-5 8.48e-4 3.05e-5 31.75e-4

rror
Std.

0.305 0.339 3.526 1.540 16.02

Dev.

computation is dependent on the detected pulse length. How-
ever, if it is known that the pulses we are to detect are of a
specific length, it may be possible to precompute the DPSS
functions. In this case, the nulling produces introduces few
extra calculations.

V. VERIFICATION OF HARDWARE

A. Measurement Test Setup Description

In order to test the performance of the radar-pulse param-
eter estimation system-composed of the RMPI sampling hard-
ware and the PDW extraction algorithm Section IV, we ran a
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Fig. 13. Parameter estimation errors for (a) CF, (b) TOA, and (c) TOD over 686 trials.

TABLE 11
DETECTION PERFORMANCE AS A FUNCTION OF THE INTERFERER STRENGTH
(1 RMPI Samp. = 1/fapc = 10.4 ns)

Input Detection Rate | False Positive Rate OCF Error OTOA Error OTOD Error
(dBm) (%) (%) (MHz) (Frames) (ns) (Frames) (ns)
-6 92.08 391 0914 4.266 44.366 4.287 44.585
-9 92.78 2.77 1.281 2.855 29.692 2917 30.337
-12 92.92 3.74 1.665 3.715 38.636 3.521 36.618
-15 92.50 2.63 0.955 3411 35.474 3.280 34.112
-18 92.78 1.47 1.665 3.715 38.636 2.521 26.218
-21 92.08 2.93 0.426 2.064 21.466 2.543 26.447
TABLE III
DETECTION RATE AND STANDARD DEVIATION OF THE PARAMETER ESTIMATE ERRORS AS A
FUNCTION OF PULSE AMPLITUDES (1 Frame = 1/ fapc = 10.4 ns)
Pulse Amp. Detection Rate OCF OTOA Error OTOD Error
V) (%) (MHz) | (Frames) (ns) (Frames) (ns)
0.016 92.5 2.089 8.330 86.632 8.033 83.543
0.032 95.0 0.753 2.035 21.164 5.871 61.058
0.063 96.7 1.88 2.993 31.127 5.157 53.633
0.126 97.5 1.349 2.997 31.169 2.577 26.801
0.251 97.5 0.839 1.953 20.311 2.536 26.374
0.501 96.7 1.259 1.983 20.623 5.451 56.690
All 96.0 1.452 4.018 41.787 5.280 54.912
TABLE IV
DETECTION RATE AND STANDARD DEVIATION OF THE PARAMETER ESTIMATE ERRORS AS A
FUNCTION OF PULSE LENGTHS (1 Frame = 1/fanc = 10.4 ns)
Pulse Length Detection Rate OCF Error OTOA Error OTOD Error
(Frames) (ns) % (MHz) (Frames) (ns) (Frames) (ns)
19.23 200 89.58 0.713 2.672 27.789 2.775 28.860
48.08 500 98.75 1.045 2.290 23.816 2413 25.095
96.15 1000 99.58 2.127 5.855 60.892 8.238 85.675
All 96.0 1.452 4.018 41.787 5.280 54.912

set of over 686 test radar pulses composed of permutations of
Ay, 0y, CF, TOA, and TOD through the RMPI and estimated
the varied parameters from the compressed-samples digitized
by the RMPIL.

Fig. 12 shows a block diagram for the test setup used for
the RMPI. The input clock and data to the RMPI were driven
differentially and ac-coupled. An arbitrary waveform generator
(AWG) with an output sampling rate of 10 Gs/s was used to
output the pulses of interest. The stimulus was input into the
RMPI whose outputs were then sampled by external ADCs lo-
cated on a custom digitizing PCB shown in Fig. 11(b): the RMPI
IC is mounted on a low-temperature co-fired ceramic (LTCC)
substrate shown in Fig. 11(a) which is placed in the center of the
digitizing board. The digitized samples were then transferred to
a PC where the PDW extraction algorithm was used to estimate
the signal parameters.

B. Parameter Estimation

For each pulse, we estimated the CF only from measurements
corresponding to times when the signal was active. We then esti-
mated the TOA from RMPI samples corresponding to noise fol-
lowed by the front end of the pulse. We repeated the procedure
for the TOD, using RMPI samples corresponding to the end of the
pulse followed by noise only. Fig. 13 shows the distribution of our
estimation errors for CF, TOA, and TOD. Additionally, Table I
shows statistics on the errors for each of the three parameters.

C. Pulse Detection

We tested the pulse detection system by generating 60 test
cases containing 12 pulses each (for a total of 720 pulses) with
varying amplitudes (ranging over 60 dB), phases, durations (100
ns—1 us), carrier frequencies (100 MHz-2.5 GHz), and over-
laps. All pulse rise times were approximately 10 ns. The pulse
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amplitudes were taken from a set of six discrete values, with 120
pulses at each amplitude level, while the durations were taken
from a set of three discrete values, with 240 pulses at each pulse
length. We then ran the detector on each data capture and col-
lected the detection statistics. The detector successfully detected
691 of the 720 pulses for a detection rate of 95.97%, while also
allowing 23 false positives for a false positive rate of 3.22%.
Table I1I shows the detection rate and standard deviation of the
parameter estimate errors as a function of the pulse amplitudes.
Aside from the lowest-amplitude pulses, the detector’s perfor-
mance is relatively invariant to the pulse amplitude. Table IV
similarly shows the detection rate and standard deviation of the
parameter estimate errors as a function of the pulse length. Asisto
be expected, the pulse detection rate improves as the pulse length
grows. The TOA and TOD estimates are worse for longer pulses
than shorter pulses, but this is to be expected; since the pulses are
longer, there are more potential locations to check, and therefore
the possibility of error increases. However, it is surprising that the
CF estimates get slightly worse as the pulse length increases.

D. Interferer Cancellation

To test the robustness of the detection and estimation system,
we repeated our detection experiment and included a constant-
frequency interferer at set amplitudes in each experiment. We
tested six interferer strengths, running 60 experiments with 12
pulses per experiment, for a total of 720 pulses per interferer
strength. In each case, all of the pulse amplitudes were the same
(to keep the relative interferer strengths well-defined) and the
pulses were allowed varying amounts of overlap. For each ex-
periment, we assumed that we knew the center frequency of the
interfering bandwidth, and that the interferer occupied a band
with a 25 MHz width. Table II shows the detector performance
as a function of interferer strength. When the interference is
very small in magnitude, the estimation is predictably better. As
the interferer grows in strength, the performance only degrades
slightly.

VI. CONCLUSION

We have presented a detailed overview of the design of both
hardware and software used in a novel radar-pulse receiver in
which information is extracted without performing full signal
reconstruction. This novel approach obtains desired information
with high accuracy while considerably reducing the back-end
computational load. The reduced computational load for param-
eter extraction potentially expands the applicability of CS-based
systems, particularly for real-time processing.

The system was validated using parameter estimates obtained
from testing with a large and exhaustive set of realistic radar
pulses spanning the parameter space. The physically measured
results generated from this prototype proof-of-concept system
demonstrates the feasibility of the approach. In addition, the data
obtained provides ample motivation for further investigation of
the merit of CS-based signal acquisition schemes in general.
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