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ABSTRACT

Compressed sensing (CS) is a topic of tremendous interest
because it provides theoretical guarantees and computation-
ally tractable algorithms to fully recover signals sampled at
a rate close to its information content. This paper presents
the design of the first physically realized fully-integrated CS
based Analog-to-Information (A2I) pre-processor known as
the Random-Modulation Pre-Integrator (RMPI) [1]. The RMPI
achieves 2GHz bandwidth while digitizing samples at a rate
12.5x lower than the Nyquist rate. The success of this im-
plementation is due to a coherent theory/algorithm/hardware
co-design approach. This paper addresses key aspects of the
design, presents simulation and hardware measurements, and
discusses limiting factors in performance.

Index Terms— Compressed-Sensing, Random Modula-
tion Pre-Integration, Analog-to-Information, CMOS

Dedicated to the memory of Dennis M. Healy

1. INTRODUCTION

1.1. Motivation

To date, the design of most information acquisition systems is
based on the requirements of the Shannon-Nyquist sampling
theorem. The principal difficulty in continuing to meet the en-
during demand for higher bandwidth systems is realizing the
required analog-to-digital converter (ADC).

Several surveys [2, 3] of ADC technology note that while
power efficiency continues to improve rapidly as a result of
technology scaling, increases in speed-resolution product do
not. Based on empirical evidence, it has been suggested that
aggressively pushing the sampling speed of ADCs in a given
process technology sacrifices enormous power efficiency [2].
Indeed, while converters with impressive speeds have been re-
ported [2], their required power dissipation and relatively low
resolution have rendered them unsuitable in many applications.

Given the slowing of process technology scaling and the
historically large disparity between rates of converter and dig-
ital system performance improvements, it appears that an in-
crease in system bandwidths and resolutions will have to be
achieved by means beyond advances in ADC technology.

This paper presents one such advance, a successful realiza-
tion of a high bandwidth system that digitizes samples at a sub-
Nyquist rate. Specifically, we present the results of feasibility
studies as well as the design strategies used in the development
of our system. The architecture of the prototype chip (imple-
mented in 90nm CMOS) is named the Random-Modulation
Pre-Integrator (RMPI), first introduced in [4, 5]. The RMPI
achieves 2GHz of bandwidth while digitizing samples at an ag-
gregate rate of just 320MSPS. The paper focuses on solutions
that were used to relax the ideal models of previous paper de-
signs [6] into implementable blocks which are robust to phys-
ical non-idealities, thus completing the journey from theory to
practice. This is a challenging task as evidenced by the recent
multitude of sub-Nyquist proposals yet the paucity of physical
implementations. As a capstone to the program, the paper con-
cludes with results from our physical implementation.

1.2. Compressed sensing background

Compressed sensing (CS) theory [7,8] states that a signal can be
sampled non-adaptively and without information loss at a rate
close to its information content. Recent advances in CS has
provided alternative means of realizing systems with increased
bandwidth and resolution without utilizing superior ADC.

The theory is complete in that it provides stable recovery
guarantees in the presence of noise and corruption. In the con-
text of RF systems, CS asserts that all signals with spectral
occupancy < B can be acquired without information loss by
non-adaptive random sampling in an incoherent domain at a
rate proportional to the occupied bandwidth1. This is remark-
able since the bands locations need not be known.

After its introduction, CS spurred much work aimed at im-
plementing sub-Nyquist signal acquisition systems. These ef-
forts have resulted in CS-based architectures such as the ran-
dom demodulator (RD) [6], the modulated-wideband converter
(MWC) [9], and others [10, 11]; see [12] for a more complete
review. The present work does not compare these various ar-
chitectures, but rather discusses the issues encountered while
implementing the RMPI in CMOS technology.

The proposed RMPI design is a ‘universal’ encoder which,

1The frequency domain is not crucial to the theory; consider a signal

that can be represented as a superposition of a few elements taken from

a structured basis. CS theory says that the number of required measure-

ments is proportional to the number of terms in the sparse expansion.
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Fig. 1: Block Diagram of the RMPI

unlike other architectures, works with signals that are sparse in
any fixed domain. However, for the purpose of concreteness,
this paper specializes the signal domain to trains of short radar
pulses embedded in an ultra-wideband.

It is also important to note that while CS systems imple-
ment a novel abstract form of sampling, it is misleading to clas-
sify them as ADC. The primary function of an ADC is to dig-
itize physical voltage levels, which represent desired informa-
tion, a function that all current A2I systems perform using stan-
dard ADCs. Most proposed CS samplers bear a much stronger
resemblance to conventional RF/base-band architectures and
are more accurately classified as analog pre-processors.

2. RMPI ARCHITECTURE

The RMPI is a variant of the RD architecture that uses paral-
lel channels. It encodes compressed samples by modulating the
input signal with a PRBS (one per channel), integrating the out-
put of the modulator, then sampling the output with a low-rate
ADC. The mixing with the PRBS needs to be at the Nyquist
rate fs = 4GHz; our implementation mixes at precisely the
Nyquist rate. The insight behind the RMPI is that it is much
easier to accurately mix a signal at 4GHz than it is to accurately
sample it at 4GHz.

Our RMPI consists of 8 parallel correlator channels that
share a common input; see Fig. 1. Each channel is imple-
mented as a modified direct down-conversion receiver with the
oscillator replaced by a PRBS generator. PRBSs are used for
correlation because they are incoherent with any structured ba-
sis [13]. The reconstruction process recovers fixed time win-
dows [0, T ], where T is chosen as large as possible while still
allowing quick computation; a typical value of T is ≈ 2μs. If

x[n] =
∫ (n+1)Δt

nΔt
x(t) is a discretization of the input, where

Δt = 1/fs, then for a fixed time period T = NΔt the system
records M � N digital measurements y = Φx. The measure-
ment matrix Φ ∈ R

M×N is block-diagonal, and the nonzero
entries are ±1, distributed as signed Bernoulli variables.

Signal recovery consists of finding a solution x ∈ R
N to

the under-determined linear system y = Φx. Any x solving the
equation is called ‘feasible’, and in general there are infinitely
many solutions. For many classes of matrices Φ, CS shows that
if y = Φx and x is sufficiently sparse, then x may be recovered
by searching for the feasible solution which has minimum �1
norm; see further discussion in §4.

3. DESIGN STRATEGY AND IMPLEMENTATION

The mathematical analysis of the RD [6] appropriately assumed
ideal blocks, measurements corrupted only by AWGN, and a
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Fig. 2: Success rate of frequency estimation across noise, for various

PRBS repetition lengths, via simulation. The noise level is unphysical,

and for comparison purposes only. A PRBS of length 128 or higher is

most robust to noise. A “success” is defined as estimation error of less

than 5MHz (each data point is the outcome of 200 independent trials)

finite-dimensional space of input signals. The relaxation of this
model into a working prototype is by no means simple, since
the design of each block involved tradeoffs that had heretofore
not been explored. This section discusses those tradeoffs and
the reasoning behind them.

3.1. Input Amplifiers

Two cascaded amplifiers precede the random demodulator. The
first is a single high gain LNA which reduces the system noise
figure. The second is a set of transconductance amplifiers, one
per channel, which reduce cross-talk among channels. The cas-
cade of amplifiers introduces a transfer function which, ide-
ally, would have linear phase/constant magnitude response in
the system bandwidth. While potentially realizable, designing
amplifiers with a near “ideal” response would require exces-
sive power consumption. Since power trades directly with gain-
bandwidth product, the 3dB cutoff of the cascade was placed at
the edge of the system bandwidth.

3.2. Random modulation

The random modulation is implemented with a passive CMOS-
switch based mixer and programmable shift register2 that con-
tains a PRBS. The primary consideration in choosing the ac-
tual bit sequence is to minimize gain variation, which means
that two input signals of the same energy should generate mea-
surements of roughly the same energy. A completely random
sequence is ideal, but any realizable bit sequence must have a
finite period after which it repeats, and shorter periods consume
less power.

Lacking a quantitative theory, we explore this tradeoff via
different types of numerical simulation. For example, Fig. 2
shows frequency estimation error at different noise levels. Each
line series is a model with the PRBS repetition indicated in the
legend, varying from 8 to ∞ (∞ means the PRBS does not
repeat with [0, T ]). The inputs are pure tones with uniformly
random phase and uniformly random frequency in the inter-
val [0, 2]GHz, so recovery is possible via digital matched fil-
tering [12]. The implemented RMPI uses a sequence length of
128.

2The use of a programmable shift-register is strictly for testing pur-

poses and could be replaced with an appropriate combination of much

lower power consumption LFSRs.
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Although not evident from the figure, the necessary PRBS
length is actually tightly coupled with the gain-bandwidth prod-
uct of the integrator (Fig. 2 uses fixed integrator parameters);
if the integrator gain-bandwidth product is small, the PRBS
length must be longer. For intuition, consider a pure tone in-
put. The PRBS is periodic, so its spectrum has distinct har-
monics, and these harmonics convolve with the pure tone to
create shifted versions of the harmonics. The integration block
attenuates high frequencies, so the shifted harmonic nearest DC
(equivalently, the nearest PRBS harmonic to the input tone) will
dominate.

If the PRBS sequence is short and hence the harmonics are
widely spread, this effect is pronounced, and some input fre-
quencies have very large output (hence high SNR), while others
have small output. The effect is reduced by either decreasing
the distance between harmonics (a long PRBS sequence), or
increasing the integrator bandwidth so that more than just the
dominant harmonic passes through.

3.3. Integration and low-rate sampling

The memory provided by the integrator is crucial for sampling
short pulses. A realizable filter has a dominant pole near DC
as well as several non-dominant poles. In our system, the dom-
inant pole is placed at 300kHz for an integration window of
25ns. A shorter time constant reduces the memory effect and
decreases the ability of the system to detect short pulses. The
second pole of the system is at 300MHz, and as suggested in the
previous section, must be great enough to allow several PRBS
harmonics to fit inside the bandwidth.

3.4. Considerations in parallelization

For a fixed overall sampling rate, it is possible to decrease the
ADC sampling rate of each channel by increasing the num-
ber of channels. From a purely theoretical standpoint, more
channels is better, since the matrix representation of the RMPI
Φ better approximates a signed Bernoulli matrix as opposed
to a block-diagonal signed Bernoulli matrix. Intuitively, there
is more randomization involved, and less chance that a signal
passes through the sieve. Fig. 3 shows numerical experiments
supporting the superiority of multi-channel designs.
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Fig. 3: Same setup as Fig. 2. The overall data output rate is fixed, and

the number of channels is varied (as the number of channels increases,

the sampling rate of each channel decreases). Designs with more chan-

nels are more robust to noise.
However, there are numerous reasons to use fewer chan-

nels. There are spatial constraints imposed by the IC and dif-
ficulties involved with synchronization. Additional channels

require more power, and make calibration more complicated.
Since the sampling rate is proportionally lower, the integration
time is longer, and the dominant pole of the integrator must
be made smaller in order to increase the time-constant. Given
these considerations (see [12]), and other pragmatic testing de-
tails, the final design uses 8 channels.

Even with 8 channels, timing differences can be significant,
and differences in time and phase delays hurt system perfor-
mance (although this can be compensated for by calibration).
In order to minimize the timing differences, minimize jitter at
the mixer, and minimize power consumption, the system clock
is distributed in a binary symmetric tree topology and converted
to CMOS levels at the place closest to the PRBS generators.
This minimizes duty-cycle distortion and clock jitter.

3.5. Accounting for non-idealities

As in a conventional receiver, the system is affected by ther-
mal noise and jitter, and a limited range of linear response, and
our techniques to deal with these effects are standard. In addi-
tion, there is preliminary work that non-linear response may be
partially accounted for; see [12].

One of the benefits of the RMPI is that it is possible to
calibrate the system and learn the transfer function. This is
done by sending in a basis of known inputs and measuring the
outputs. On simulation results, this shows enormous promise,
and hardware calibration results are ongoing.

4. RECOVERY ALGORITHMS

CS theory suggests basis pursuit to recover the signal, but there
are many variations. We refer the reader to [21] for a review,
and to [12] for techniques used specifically for RMPI sam-
ples. Table 1 shows a representative sample of state-of-the-
art solvers, and their performance on a sample problem gen-
erated from the RMPI simulations. The table plots relative
reconstruction error ‖x − x̂‖2/‖x‖2 where x̂ is the estimate
produced by the solver. The input x was a radar pulse, and
measurements were recorded from the Simulink model using
realistic values for the non-ideal blocks and noise sources. Re-
construction requires knowledge of some sparsifying dictionary

Reconstruction error

Solver 8× Gabor 32× Gabor DCT

OMP [14] 1.3e-1 1.6e-1 9.9e-2

OMP (SPAMS [15]) 1.0e-1 6.2e-2 8.3e-2

CoSaMP [16] 1.5e+1 DNC 1.5e-1

CoSaMP (modified) 1.3e-1 9.2e-2 2.0e-1

�1 synthesis [17] 2.9e-1 3.4e-1 2.4e-1

“ ” with reweighting 1.3e-1 2.1e-1 2.0e-1

�1 analysis [17] 1.1e-1 1.4e-1 2.8e-1

“ ” with reweighting 6.6e-2 5.4e-2 2.1e-1

LARS (SPAMS [15]) 1.3e-1 9.5e-2 1.7e-1

ALPS [18] 1.4e-1 1.1e-1 2.3e-1

SL0 [19] 2.6e-1 4.2e-1 1.2e-1

AMP [20] DNC DNC DNC

Table 1: State-of-the-art solvers on a realistic sparse recovery problem.

The problem uses realistic measurements, and the signal is compress-

ible but not exactly sparse. When the algorithm diverged or failed to

converge, we report DNC.
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Fig. 4: Pulse-on-pulse recovery. Two superimposed pulses, one of

275MHz and one of 401MHz, are recovered from hardware data. The

carrier frequency of both pulses is estimated to within .234MHz.

Ψ, and the three columns of numbers repesent three choices of
Ψ: an 8× oversampled multi-scale Gabor time-frequency dic-
tionary, a 32× oversampled Gabor dictionary, and a discrete
cosine basis. The discretized version x of the input was of size
N = 2048, and all solvers took on the order of 1 minute or
less.

The results suggest that many solvers do quite well and
achieve less than 10% relative error. It also appears that the
reweighted techniques used in [12] are among the best. Since
this was a single trial, and algorithm parameters need to be tai-
lored for any application, one should not view the results as
a comparison. Rather, these give an idea that there are many
alternatives to basis pursuit (basis pursuit is equivalent to �1
synthesis in the table) that display competitive performance.

5. EMPIRICAL RESULTS AND DISCUSSION

Reconstructions (from hardware measurements) of radar-pulses
with carrier frequencies from 100MHz-2GHz have been ob-
tained [1]. Some typical reconstructions of interesting scenar-
ios are shown in Figs. 4 and 5. The test inputs were generated
by an arbitrary waveform generator and the reconstructions
were performed using a variant of basis pursuit with reweight-
ing (see [12]). Figure 4 shows the reconstruction of two
450ns pulses that overlap in time (pulse-on-pulse) with center-
to-center time separation of 200ns and carrier frequencies
275MHz and 401MHz. This is a challenging reconstruction
for even Nyquist-rate systems. Fig. 5 shows limits of the sys-
tem; Fig. 5(a) is a reconstruction of a small tone 54 dB below
the full-scale amplitude, thus the system dynamic range is
≥ 54dB. Fig. 5(b) shows the reconstruction of a 75ns pulse
which for our integration window time of 25ns represents only
24 samples worth of data. It is possible to recover a 50ns pulse
with only 1.4MHz frequency estimation error, although the
pulse window is not recovered well.

Future efforts will be focused on hardware calibration and
improved signal recovery models.
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