
516 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2012

A Nonuniform Sampler for Wideband
Spectrally-Sparse Environments

Michael Wakin, Member, IEEE, Stephen Becker, Member, IEEE, Eric Nakamura, Michael Grant, Member, IEEE,
Emilio Sovero, Senior Member, IEEE, Daniel Ching, Juhwan Yoo, Member, IEEE,
Justin Romberg, Senior Member, IEEE, Azita Emami-Neyestanak, Member, IEEE, and

Emmanuel Candès, Member, IEEE

Abstract—We present a wide bandwidth, compressed sensing
based nonuniform sampling (NUS) system with a custom
sample-and-hold chip designed to take advantage of a low
average sampling rate. By sampling signals nonuniformly, the
average sample rate can be more than a magnitude lower than
the Nyquist rate, provided that these signals have a relatively low
information content as measured by the sparsity of their spectrum.
The hardware design combines a wideband Indium-Phosphide
heterojunction bipolar transistor sample-and-hold with a com-
mercial off-the-shelf analog-to-digital converter to digitize an
800 MHz to 2 GHz band (having 100 MHz of noncontiguous
spectral content) at an average sample rate of 236 Ms/s. Signal
reconstruction is performed via a nonlinear compressed sensing
algorithm, and the challenges of developing an efficient imple-
mentation are discussed. The NUS system is a general purpose
digital receiver. As an example of its real signal capabilities,
measured bit-error-rate data for a GSM channel is presented, and
comparisons to a conventional wideband 4.4 Gs/s ADC are made.

Index Terms—Compressed sensing, indium-phosphide hetero-
junction bipolar transistor (HBT), nonuniform sampler, sample-
and-hold, wideband analog-to-digital converter (ADC).

I. INTRODUCTION

I N such far-ranging fields as radio, telephony, radar, image,
audio and seismic acquisition, most analysis techniques

follow the same pattern: 1) digitize an analog signal, 2) perform
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DSP, and, optionally, 3) convert back to the analog domain. The
common piece of hardware in this chain is the analog-to-dig-
ital converter (ADC). The current trend in systems is wider
bandwidths and larger dynamic ranges, and designing a single
ADC to meet both of these requirements simultaneously is
difficult. To get around this, systems typically use time-inter-
leaved ADCs or channelize the band and digitize each channel
separately. However, these approaches do nothing to reduce
the output data rate and can require prohibitively high power.

A. A New Paradigm

The effective instantaneous bandwidth (EIBW) of an ADC
is the total bandwidth of the spectrum that can be unambigu-
ously recovered. Although it is generally desirable to design re-
ceivers with high EIBW—say, for applications involving cog-
nitive radio or communications intelligence—it may also often
be the case that, at any given time instant, much of the spectrum
within this bandwidth is unoccupied. One can define the infor-
mation bandwidth of such signals to be the actual amount of
occupied spectrum. In this paper, we present a receiver design
intended for signals with high EIBW but low information band-
width. We do so by adopting concepts from the field of com-
pressed sensing (CS).
The theory of CS [7], [15] suggests that randomized low-

rate sampling may provide an efficient alternative to high-rate
uniform sampling. For a survey of the modern CS literature, the
reader is referred to [8].
To put CS on a concrete footing, we give an explicit (but for

themoment, discrete-time) example. Let be a length- signal,
and suppose the discrete Fourier transform (DFT) of , denoted
, is -sparse, meaning that it has only nonzero

entries.
Now, collect only a subset of all the entries of . Suppose

the sample locations are chosen uniformly at random, and
let be the size of . Because ,1 it is generally not
possible to recover using a linear method. The remarkable
fact of CS is that if is merely proportional to , then
with very high probability (which can be made precise [7]), it is
possible to exactly recovery by solving the linear program

Here, . There are related approaches,
such as greedy methods, that offer similar guarantees; see [27]
for a survey.

1In our implementation, is approximately smaller than .

2156-3357/$31.00 © 2012 IEEE
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This result itself has limited application to signal processing
since (1) it is unlikely that a digital signal has an exactly sparse
DFT, and (2) the model does not account for noise. Fortunately,
there are robust versions of the above statement, which allow
signals to be only approximately sparse, and which allow noise
[6]. In this case, exact recovery is not possible, but the recovered
signal agrees with the true signal up to the noise level.
This finite dimensional model does not fully cover the contin-

uous case since an analog signal, unless it is bandlimited and pe-
riodic, must be treated in an infinite dimensional setting. The in-
finite dimensional setting may be attacked directly, and there is
recent theory [1], [14] that connects the finite and infinite dimen-
sional problems. On a practical side, some nonperiodic (also
known as multi-coset) sampling results for multi-band signals
[19] have recently been extended to multi-band signals when
the band locations are unknown [20]. The approach in [20] and
[21] is a hybrid finite-infinite approach that solves a finite di-
mensional problem to determine the band locations and then
processes the samples directly in analog.
The approach taken in this paper deals with the infinite

dimensional problem indirectly. Through extensive numerical
simulation, and by using standard signal processing techniques
such as windowing, it is shown that the error incurred by using
a large but finite number of samples is insignificant compared
to circuit nonidealities. Numerical simulations are required
regardless since CS theories rely on possibly conservative
constants and also on signal-dependent parameters, such as the
sparsity of the signal.

B. Approach

1) Overview: The CS example suggests that signals with
high EIBW but low information bandwidth can be efficiently
captured using nonuniform samples. Our implementation is
such a nonuniform sampling (NUS) approach, which we de-
scribe here and treat in more detail in Section II. The key ideas
are to leverage the high resolution that can be achieved with
lower-rate ADCs and to exploit the fact that the electromagnetic
spectrum in our bandwidth is typically not full.
There are two sets of signal restrictions for the NUS. The first

is a familiar restriction requiring the EIBW to be less than half
the (equivalent) Nyquist sampling rate. The second restriction
is an algorithmic one: CS theory dictates that the input signal
should have spectral sparsity in order to achieve accurate re-
construction. Roughly speaking, in our implementation the in-
formation bandwidth may be up to 10% of the EIBW, although
this figure is dependent on the rate at which we acquire NUS
samples, and by increasing this rate one could accommodate a
larger information bandwidth.
The idea behind the NUS is explained in Fig. 1. For our

setup, the maximum EIBW is 2.2 GHz because of an underlying
“Nyquist rate” clock with a frequency of . For the
sake of explanation, assume there is a Nyquist rate ADC which
samples the input signal—the actual implementation does not
use a Nyquist rate ADC, since the point of the NUS is to avoid a
high-rate ADC. A pseudo-random bit sequence (PRBS), gener-
ated off-chip, controls which of these samples are collected and
which samples are ignored. Of every 8192 Nyquist-rate sam-
ples, only 440 are collected. Note that our method of “on grid”

Fig. 1. Conceptually, the NUS takes Nyquist-rate samples of the input signal
and then randomly discards most of the samples. The implemented version uses
a clock rate of 4.4 GHz and effectively keeps only one of every 19 samples (on
average) for a mean output sample rate of 236 MHz.

Fig. 2. Simplified block diagram of NUS receiver. The NUS sampler IC (left
block) was implemented with the NGAS InP HBT process.

nonuniform sampling is very different from allowing arbitrarily
spaced samples that are not integer multiples of the underlying
Nyquist rate, since the latter approach would be nearly impos-
sible to calibrate.
The actual implementation, shown in Fig. 2, replaces the the-

oretical sub-sampled Nyquist-rate ADC with a nonuniformly
clocked sample-and-hold (S/H). The sample times of the S/H
are controlled by the PRBS sequence, and the same sequence
controls a single low-rate ADC which performs the final quan-
tization step. The custom S/H is necessary because the ADC is
not designed for 2.2 GHz bandwidth signals.
CS theory confirms that a sufficient number of NUS samples

can capture all of the information in the incoming signal—it is
possible, after all, to reconstruct all of the Nyquist-rate samples
from just the NUS samples. One can think of the NUS as an
analog-to- information converter,2 and given the NUS samples,
there are many possible strategies that one could employ for ex-
tracting the signal information. Certain very simple questions
can be answered with very little processing of compressive sam-
ples; examples of such questions include detection or classifica-
tion of the incoming signal [13] and estimation of signal (e.g.,
radar pulse) parameters [30]. In other applications, of course,
one might wish to actually reconstruct the signal, restoring all of
the missing Nyquist-rate samples. This problem is more compu-
tationally demanding, if only due to the extremely high number
of Nyquist-rate samples that must be computed; any digital pro-
cessing on billions of samples per second is guaranteed to be ex-
pensive. The unique benefit of a NUS receiver over a conven-
tional ADC is that the signal information is captured directly
in compressed form. Thus, for remote sensing and other appli-
cations that do not require information extraction at the sensor,
the amount of data that must be transmitted from the sensor can
be greatly reduced, and the computational burden can be shifted
downstream where power may not be a constraint.

2In fact, this work was supported by DARPA’s Analog-to-Information
program.
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TABLE I
NUS SPECIFICATIONS AT A GLANCE. POWER INCLUDES THE COMMERCIAL
ADC, BUT NOT THE CLOCK OR THE PRBS PATTERN GENERATION. CHIP
ALLOWS UP TO 2.2 GHZ OF BANDWIDTH THOUGH WE DO NOT HAVE SNDR
MEASUREMENTS FOR THIS RANGE. AMOUNT OF OCCUPIED SPECTRUM
IS CONSERVATIVELY ESTIMATED, AND FURTHERMORE THE AMOUNT
OF OCCUPIED SPECTRUM CAN BE INCREASED WHEN LOWER-FIDELITY

RECOVERY IS ACCEPTABLE

Due to the unique challenges of the reconstruction problem,
we devote part of this paper to proposing an efficient com-
putational framework for reconstruction and to characterizing
the computational burden of performing reconstruction. In
Section III, we discuss a customized block algorithm for recon-
struction that we have implemented on a standard workstation.
Each block is composed of Nyquist-rate samples,
which corresponds to a time interval of length .
When calculating the occupied bandwidth, the entire time
interval must be considered, so the algorithm-based restriction
is that at most 10% of the length- DFT of the sample block
should be nonnegligible. (This 10% figure could be increased if
we were to keep more than 440 out of every 8192 Nyquist-rate
samples.) Extremely short duration signals are automatically
excluded from the signal model since they have a broad fre-
quency spectrum which ruins the sparsity. Our block-by-block
reconstruction strategy allows for the capture of frequency
hopping signals, although for the specific tests reported in
Section IV we require some stationarity of the spectrum (over,
say, a period of 2 ms) to allow the spectral support to be
identified.
2) Hardware Specifications: The NUS integrated circuit (IC)

is designed in an Indium-Phosphide (InP) heterojunction bipolar
transistor (HBT) technology. A TI ADS5474 14-bit 400 Ms/s
ADC (10.9 ENOB at 230 MHz) is used to digitize the samples,
and the data is transferred to a computer for processing.
The specifications of the NUS are described in Table I. Power

consumption is relatively high because the front-end is de-
signed for wide bandwidth and high dynamic range. However,
we stress that lower system power is possible for applications
that require data transmission, since the NUS produces
fewer samples.
Comparing the NUS to a Nyquist ADC is difficult since re-

covery error depends on spectral sparsity. To measure the res-
olution of the samples, the NUS can be operated in a uniform
sampling mode. This measurement shows that the NUS has 8.8
ENOB performance across the frequency band from 800 MHz
to 2 GHz. It is important to note that this measurement does
not assess the reconstruction accuracy and does not directly
relate to ADC ENOB. Instead of a direct comparison, the re-
sults in Section IV show promising GSM bit error rate (BER)
performance.

C. Related Work in Compressed Sensing

1) Nonuniform Samplers: To the best of our knowledge,
there have been no IC implementations of the NUS that fully
reconstruct the signal. The interesting work [2] on optical sub-

Nyquist sampling is similar in spirit, but it works in the optical
domain with commercial off-the-shelf (COTS) components and
uses a least-squares fit to reconstruct pure tones rather than a
CS-based recovery algorithm to reconstruct an information-car-
rying modulated signal.
2) Other CS Devices: The randommodulation pre-integrator

(RMPI), a type of random demodulator (RD), is a CS receiver
and digitizer which has recently been implemented in [28]–[30];
see also [28]–[30] for references and related approaches. The
RMPI uses a far more powerful CS approach that takes nearly
random linear combinations of samples, akin to multiplying the
digital vector by a random matrix. The theory predicts that
such an approach is optimal for nearly all types of sparse signals,
not just signals that are sparse in the Fourier domain. The cost of
this generality is that the RMPI is more difficult to implement,
the signal processing is less straightforward, there is nontrivial
calibration, and recovery is slower than for the NUS. The NUS
also allows simple postprocessing windowing techniques.
3) Xampling: The modulated wideband converter (MWC)

[22], which follows the principles of xampling [21], works di-
rectly in the analog domain when possible. The approach re-
quires signals that have a few dense bands of spectrum, such
as three or four bands. The digital step is a continuous-to-finite
(CTF) block that finds the location of the bands and must be
run every time the band structure changes. However, the MWC
does not naturally handle our sparse spectral model since the
signals may not be easy to group into contiguous blocks. The
hardware prototype in [22] has yet to be extended to an IC
implementation.
In summary, these other CS and xampling approaches all have

their own merits, but for the sparse spectral sensing model de-
fined in the preceding subsection, we believe that the NUS is
the best candidate.

D. Outline

In Section II, the implementation of our approach is de-
scribed. Section III covers the recovery process in detail,
describing the general CS recovery method as well as the
necessary changes and improvements for our specific ar-
chitecture. Experimental hardware results are presented in
Section IV, and the results of the prototype compare with pre-
vious state-of-the-art ADCs. The paper concludes in Section V
with some learned wisdom and with a discussion of future
challenges.

II. HARDWARE IMPLEMENTATION

A simplified block diagram of the nonuniform sampler (NUS)
receiver is shown in Fig. 2. The low-jitter 4.4 GHz clock is used
to re-clock the nonuniform pattern to accurately set the sampling
instances. For flexibility in testing, the NUS pattern is set by a
repeating pseudo-random bit sequence (8192 bits in length) pro-
vided by an external pattern generator. A commercial 400 Ms/s
ADC (TI ADS5474 [25]) is used to digitize the samples which
are captured by a logic analyzer. In order to recover the signal,
the samples must be aligned to the NUS pattern; this is accom-
plished with a synchronization pulse from the pattern generator.
The main building blocks of the NUS receiver are the master

and slave sample-and-hold circuits (MSH and SSH), the timing
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Fig. 3. Schematic of TG circuit.

generator (TG), and the output buffer. In order to achieve the full
bandwidth required, the MSH circuit was designed for 2.4 GHz
of bandwidth. The function of the TG is to re-clock the NUS pat-
tern (NIN) with the Nyquist clock (CIN). The re-clocked NIN
is then used as the mode control input to drive the MSH/SSH
circuits. The output of the SSH is then buffered and amplified
so that the signal can drive the external ADC. The output buffer
bandwidth determines the settling time of the step-and-settle in-
terface. The chip is designed for a full-scale input amplitude of
0.8 Vp-p differential and a 2.2 Vp-p differential at the output.
The NUS IC is designed to perform a sample-and-hold function
at a period as long as 6.1 ns and as short as 2.7 ns between con-
secutive samples, which is under the 400 MHz sampling limit
of the ADC.

A. Circuit Description

The main function of the TG, shown in Fig. 3, is to generate
timing signals for the master and slave sample-and-holds. This
is accomplished by using a low-jitter clock to re-time and delay
the NUS pattern input in a chain of flip-flops. Four flip-flop de-
lays are used to delay the ADC clock (NOUT) to provide ad-
equate settling time for AOUT as well as to account for finite
aperture delay of the ADC.
The master and slave sample-and-hold bridge circuits both

use diode sampling bridges but have different power consump-
tion based on bandwidth/spur requirements. Fig. 4 shows the
basic design of the sampling element. The circuit is controlled
by the re-timed NIN coming from the TG to switch the bridge on
or off. The schematic shown is only for one of the two pseudo-
differential circuits.
The analog input/output interface of the NUS IC was care-

fully designed to optimize performance. Fig. 5(a) shows the
NUS IC input receiver, which acts as a 50- load termination
for the analog input signal (AIN) and provides a low impedance
drive to the subsequent sampling bridge. The analog output
driver [Fig. 5(b)] is a differential quartet design [10]; this
was chosen because it offered the required performance while
satisfying our finite power consumption goal. The driver was
optimized for a large dynamic range and designed to be dc
coupled to the TI ADS5474. The gain of the buffer is (6
dB), and it was designed to have an SFDR better than 70 dB
and 500 MHz bandwidth. To increase simulation accuracy, a
detailed interconnect model was used on the step-and-settle
ADC interface. This model included bondwires and pallet
traces for the NUS packaging, transmission line models for
printed circuit board (PCB) traces, a termination network, and
the equivalent loading model from the ADC datasheet.

Fig. 4. Sample-and-hold circuit. MSH and SSH are functionally identical. All
signal paths and circuits are differential with the exception of the diode bridges.
The diode bridges are implemented as two single-ended bridges. The plot shows
the output at the transition from the tracking to the holding state (at the MSH
output). V1 is the analog input signal, V2 is the MSH clocking signal, and V3
is the MSH output signal. The MSH is tracking V1 when V2 is high. When V2
goes low, the MSH is placed in hold mode.

Fig. 5. NUS IC input/output interface circuits. (a) The analog input receiver
is a differential 50 terminated emitter follower. In addition to providing load
termination and buffering, the receiver also sets the common-mode level for the
master sampling bridge. (b) The output buffer is a differential quartet design.

The overall timing relationship between the NUS circuit and
the external ADC is shown in the left panel of Fig. 6. Also dis-
played in the right panel of Fig. 6 is a simulation showing the
NUS operation with a 1.6 GHz input sine wave and the resulting
NUS samples.

B. Circuit Fabrication

The NUS IC is fabricated in Northrop Grumman Aerospace
Systems’ (NGAS) InP HBT technology featuring
and , four-layer metal stack and precision TFR
and MIM caps [18]. A die photograph of the mm mm
NUS IC is shown in Fig. 7. The NUS die is larger than it needs
to be to allow the dicing of other die on the wafer. Pictured in
Fig. 8 is the NUS test fixture containing the NUS IC and TI
ADS5474 along with various signal and power connectors. The
PCB draws a total of 5.8 W: 3.2 W for the NUS IC and 2.6 W
for the ADC.
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Fig. 6. NUS IC sampling timing and waveforms. Left panel: Interface timing between NUS die and ADC. Right panel: Simulated waveforms before and after
being sampled by NIN. Horizontal scale is in nanoseconds.

Fig. 7. NUS IC die photo. Die size is mm.

Fig. 8. NUS test fixture. The NUS IC is mounted on a custom pallet. Also
shown is the 14-bit ADC as well as various test equipment connector interfaces.

C. Nonuniform Sample Pattern

The NUS sampling pattern is a pulse train with nonuniform
spacing between pulses. It is selected to meet a list of certain cri-
teria. First, the pattern is clocked at 4.4 GHz, and reconstruction
produces the equivalent of Nyquist samples taken at this rate.
Second, the pulse widths and spacings must satisfy the clocking
requirements of the ADS5474. Specifically, the minimum pulse
width is 6 clock cycles, the minimum spacing ( ) between
pulses is 12 clock cycles, and the maximum spacing ( ) be-
tween pulses is 27 clock cycles. An example pattern illustrating
these specifications is shown in Fig. 9. In effect, as the sample

spacings vary between 12 and 27 clock cycles, the instanta-
neous sampling rate of the NUS receiver varies between 163
and 367 MHz, which is within the range of the 400 MHz ADC.
We designed the NUS pattern to repeat every 8192 Nyquist

samples, during which time there are 440 pulses which set the
sampling locations. This corresponds to an average sample rate
of 236 MHz. We evaluate the quality of our pattern using a third
criterion: the Fourier transform of favorable patterns will tend
to have a flat, noise-like spectrum. Fig. 10 compares two NUS
patterns with different inter-sample spacings. The pattern shown
in the top plots has strong resonances across the Nyquist band.
In contrast, the pattern shown in the bottom plots, which has
undergone a randomization of its sample locations, has a much
whiter spectrum. The flat spectrum is preferred since then all
signals have equal gain.

III. DATA PROCESSING

In this section, we describe our computational techniques for
efficiently recovering a Nyquist-rate signal from the NUS data
by filling in the missing samples. Sections III-A–III-D describe
our procedures for windowing the NUS data and recovering the
missing samples. Section III-E then briefly discusses additional
practical concerns and the computational complexity of imple-
menting this reconstruction algorithm.

A. Windowing

While the NUS produces an arbitrarily long sequence of
samples, the recovery algorithm can only deal with a finite
number of them at any given time. It is, therefore, necessary
to segment the data stream, and we achieve this by windowing
the signal. An effective windowing process must guard against
edge effects as well as the well-known spectral spreading
effect, which would destroy the very Fourier sparsity we seek
to exploit. Fortunately, the concept of a perfect reconstruction
filter bank (PRFB) [24] can be readily adapted to our pur-
poses. A windowing procedure breaks the infinite signal into
a series of (possibly overlapping) vectors by using an analysis
window. After signal processing, the infinite length signal can
be recovered by stitching together the finite series using the
analysis window. Using windows from a PRFB ensures that
the windowing process itself does not introduce any errors.
An example of a PRFB is a rectangular analysis and synthesis
window with no overlap, but of course this causes spectral
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Fig. 9. NUS pattern example. High pulses have a width of 6 clock cycles. The minimum pulse spacing Tmin is 12 clock cycles, and the maximum pulse spacing
Tmax is 27 clock cycles.

Fig. 10. Comparison of a nonoptimized NUS pattern (top plots) and a properly randomized pattern (bottom plots). (a) Sample patterns in the time domain.
(b) Spectral plots. (c) Histograms of inter-sample spacings.

spreading; our implementation uses smooth windowing and
50% overlap.
To describe our processing chain, we let denote the raw

stream of NUS data, i.e., the discrete-time stream of samples
coming from the nonuniformly clocked ADC. The processing
begins by inserting zeros into to produce a Nyquist-rate
sample stream ; the zeros are inserted at all locations where
the NUS did not sample. A delay and downsampling chain
then partitions into overlapping windows of length and
multiplies them by an analysis window function . The result
is a stream of -point signals

Here, denotes sample position in the th windowed
signal. Because these windows are overlapping, each sample

maps to two different entries

The signals are delivered to the sparse recovery engine,

which produces a stream of estimates . The upsampler
delay chain stitches these estimates together using an -point
synthesis window function to yield the reconstructed
Nyquist-rate sample stream : for each integer and each

Here, is the total system delay. The downsample and upsample
chains introduce a combined delay of Nyquist samples,
so .
The perfect reconstruction criterion requires that the window

functions and must satisfy

for . With this criterion satisfied, we
can ensure that the performance of the system is limited by our
precise choices of , , and , and by the fidelity of our
windowed sparse recovery algorithm. The design of the anal-
ysis window is critical, because it directly affects the spec-
trum of the estimated signals . To minimize the effect of spec-
tral spreading, we must choose an analysis window function
whose spectral sidelobes are well below the system noise floor
(high dynamic range), and a main lobe that is as narrow as pos-
sible (high sensitivity). We found experimentally that the square
of a Kaiser-Bessel derived (KBD) window used in audio coding
produces excellent results. Furthermore, this choice leads to a
rectangular synthesis window (i.e., ) [24], which is
not only convenient but ensures that our reconstruction errors
are weighted equally in time. We use and KBD
parameter , for which the amplitude of the analysis
window (in the frequency domain) falls below our system noise
floor within six bins. This means that a windowed sinusoid will
deliver nontrivial signal energy to no more than 11 DFT bins
(of 32 768 total bins). It is possible to improve upon this result
by designing a window using convex optimization methods, but
the KBD window is sufficient for our purposes.
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Fig. 11. Block diagram of the practical processing steps.

While the PRFB-inspired architecture has proven useful for
verifying the fidelity of our system design, our actual imple-
mentation differs in important practical respects. In particular,
we choose NUS sampling patterns such that each half-window
contains an identical number of NUS samples. This allows us
to eliminate the zero-padding step altogether: the NUS samples
can be partitioned into overlapping windows of points each,
and these windows can by multiplied by appropriately sampled
versions of the analysis window function. The result is a more
practical arrangement of processing steps depicted in Fig. 11.
The key difference from our earlier description is that the sparse
recovery engine no longer receives the zero-padded and win-
dowed -point signal ; instead its input is , a windowed
(but not zero-padded) -point NUS signal.
With this architecture in place, we can treat each window sep-

arately if we choose—although we can (and do) take advan-
tage of the spectral similarity between adjacent windows to im-
prove performance. From this point forward, therefore, we shall
focus solely on the generation of estimates of signals

, given nonuniform sample sets and exact
knowledge of the sampling pattern. When it is clear from con-
text that we are dealing with a single window, we will drop the
subscript altogether.

B. Frequency Domain Representation

The natural initial choice to compute the frequency domain
representation of an -point signal is the discrete Fourier
transform (DFT). For real signals, the DFT exhibits real sym-
metry, but the dc and Nyquist component are real-valued; for
a more elegant and convenient treatment, we define a slight
variant of the DFT that shifts the computed frequency bins by
one half

for . This modified DFT remains or-
thonormal and preserves the sparsity behavior of compressible
signals, but for real signals it exhibits a simpler symmetry:

. Thus the frequency domain
behavior is captured in complex values. If we preserve
only the first frequencies and scale by to preserve
orthonormality, the result is what we call the half-bin FFT
(HBFFT)

for . Let denote the
real-to-complex HBFFT operation, so . Because

is orthonormal, we have , where denotes the
complex-to-real adjoint of .
It turns out that the HBFFT can be computed as the com-

position of a single custom butterfly, a standard -point com-
plex DFT, and a simple reshuffling; the inverse HBFFT can also
be computed using similar steps. The tight relationship between
the HBFFT and the standard complex FFT allows us to achieve
high performance with standard FFT libraries.

C. Reprojection on Estimated Support

If the support of the signal is known—that is, if we know
which frequency bins contain active signal content (see
Section III-D)—and is sufficiently sparse, then we can re-
duce the reconstruction process to a standard least-squares
problem we now introduce. Let represent the
Nyquist-rate signal we wish to estimate, and let be
the NUS samples. Those samples are selected from indexes

, . Thus, and satisfy
, where is assembled from rows

of the identity matrix. Our task is to construct
an estimate of given these samples . Using the
real-to-complex HBFFT operator defined in Section III-B, we
let and denote the frequency domain
representations of and , respectively.
Let , , de-

note the support of the signal. We can write our estimate as
, where is a set of nonzero coefficients to

be determined below, and is a frequency sam-
pling matrix assembled from rows of the
identity matrix.
With these definitions in place, the reprojection problem can

be cast as

To help explain the above notation, let us note that
is computed from by constructing a length- vector con-
taining the entries of in the positions indexed by , com-
puting the complex-to-real inverse HBFFT of this vector, and
extracting from the result the values in the positions indexed
by . The minimization on is a least-squares problem and
can be expressed as normal equations

The linear operation is positive
definite, but it cannot be expressed as a complex matrix due
to the presence of the complex-to-real operation . However,
we have chosen to solve this form using conjugate gradients,
which allows us to utilize the HBFFT and sampling operators di-
rectly. Furthermore, CS theory shows that the linear operator is
well-conditioned, so conjugate gradients will converge rapidly.
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Fig. 12. Three iterations of the greedy selection procedure for preliminary support estimation. In each iteration, blocks of indexes with high aggregate energy
estimates are identified (top row). A reprojection step then removes their influence from the measurements so that additional active blocks can be identified
in subsequent iterations. (The aggregate statistics are plotted before being reset with in step 1c of our algorithm below.) Plots in the bottom row
show, for one of windows used in the estimation, the reprojected spectrum estimate using the current support estimate.

D. Spectral Occupancy Estimation

The problem of recovering a signal fromNUS samples can be
partitioned into two subproblems: 1) first estimate the support
of the unknown signal in the frequency domain (we refer to this
step as spectral occupancy estimation), and then 2) reproject to
estimate the signal given this estimated support. We have devel-
oped a customized algorithm for spectral occupancy estimation
that is inspired by existing techniques in CS but adapted to the
specific nuances of our problem.
The most unique aspects of our problem that we seek to ex-

ploit are as follows. 1) The nonzero HBFFT coefficients for a
given window—while few in number—also tend to cluster into
an even smaller number of contiguous groups. In the CS litera-
ture, this is known as a structured sparsity model [3]. Our algo-
rithm is inspired by existing ones in the model-based CS litera-
ture designed to exploit block-sparse [17] and clustered-sparse
[11] models. 2) Although our data are partitioned into finite win-
dows (as described in Section III-A), the spectral occupancy is
often stationary over the duration of multiple windows. In cases
like this—where multiple sparse signals share the same sup-
port—the signals are said to obey a joint sparsity model. Like
others in the distributed CS literature [5], our algorithm pro-
cesses the data from multiple windows jointly in order to better
identify the support.
Our spectral occupancy estimation algorithm is greedy: we

first run a few iterations of a greedy selection rule that builds
an estimate of the support, and we then perform a pruning pro-
cedure to remove false positives. The greedy selection proce-
dure (step 1 below) is iterative because it is difficult to identify
all of the active frequencies at once; at each iteration, only the
largest frequencies can be accurately estimated, since artifacts
from these large signals will hide smaller signals. As illustrated
in Fig. 12, however, once some blocks of active frequencies
have been identified, a reprojection step removes their influence
from the measurements, and weaker active frequencies can then
be identified. We find the subsequent pruning (step 2 below) to
be helpful because setting the thresholds in step 1 low enough
to detect weak signals tends to also introduce a number of false
positives.
To describe our algorithm, let us set the following no-

tation. Let represent the unknown Nyquist-rate
samples from window number , and let represent
the NUS samples. Those samples are selected from indexes

, , and so following
the notation defined in Section III-C, , where

. From we would like to estimate the
positions of the non-negligible entries of .
We accomplish this by considering an ensemble of windows

simultaneously and exploiting the
assumption of stationarity (i.e., we assume that does not
change from window to window). Our algorithm consists of
the following steps.
1) Preliminary support estimation

a) Set the iteration count , and for each window
, define a residual vector . Set the ini-
tial support estimate to be empty: . Set
the maximum allowable size for the support esti-
mate . Set for each

.
b) For each window , compute the correlation statistics

. Then, square and sum the corre-
lation statistics over multiple windows: for each

, compute the aggregate statistic
.

c) Identify a set of possible active frequencies. We add
an index to if is fre-
quently among the largest entries of across mul-
tiple windows , or if is among the largest
entries of . We also include all entries of the pre-
vious support estimate . For the purpose of compu-
tations below, we then set for each

and reset .
d) Pad the set with some number of indexes on
both sides of each index in . For example, if

and , update to
.

e) Identify contiguous blocks of indexes in , and com-
pute the estimated energy of each block. For example,
for the updated given above, two blocks are identi-
fied, and their corresponding energies are

and .
f) Populate the new support estimate with all of the
indexes from the highest energy blocks, such that

does not exceed . This increasing
threshold allows slightly larger support estimates at
each iteration.

g) On each window, use a reprojection step to project the
observations orthogonal to the chosen support ,
and let denote the resulting residual.
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h) Store the aggregate energy estimates for use in future
iterations, setting for all . Then,
increment the iteration counter . Stop when
or the energy in the residual vectors is sufficiently
small. Otherwise, repeat steps 1b–1g.

2) Final pruning
a) Set the iteration count .
b) Reproject each set of samples onto the esti-
mated support to obtain an estimate for the
HBFFT coefficients. Square and sum these esti-
mates: for each , compute

.
c) For each contiguous block of indexes
in , compute the largest value of ,
e.g., if , com-
pute , , and

.
d) Remove blocks from whose maximum value
does not exceed some threshold designed to eliminate
false positives. Increment the iteration counter .

e) Repeat steps 2b–2d for a small number of iterations.
f) Following the same procedure as in step 1d, pad the
support estimate with some number of indexes
on each side of each estimated block. (This procedure
operates only so long as .)

After running the entire support estimation algorithm on an
ensemble of windows, one can rerun the algorithm on one or
more subsequent ensembles of windows, either for cross-val-
idation purposes or to detect changes in the spectral occupancy.
Overall, our algorithm most closely resembles the well-

known OMP and CoSaMP algorithms in CS [23], [26], although
we have also experimented with reweighted minimization
[9] and believe that, with appropriate modifications, it could be
competitive as well. Our algorithm does enjoy some important
advantages over OMP and CoSaMP for this problem. First,
OMP estimates a support by adding one index per iteration and
thus would require many hundreds of iterations for the scenarios
we have tested; our algorithm is guaranteed to terminate in a
small number of iterations (at most 10 in step 1 plus a small
fixed number in step 2). Second, neither OMP or CoSaMP can
exploit the fact that the nonzero HBFFT coefficients should
tend to cluster into contiguous groups; our algorithm improves
support estimates by exploiting this block structure. Finally, our
algorithm processes the data from multiple windows jointly,
and this allows supports to be estimated up to a maximum size
of . Neither CoSaMP nor OMP (when run on
a single window) can tolerate sparsity levels that are such a
significant fraction of the measurement rate.

E. Additional Implementation Concerns

1) Model Violations: Our system is designed to support sig-
nals with up to 100 MHz of information bandwidth. There are a
number of strategies that one could use to confirm that the input
signal obeys this model assumption. For example, in step 1 of
the support estimation algorithm described in Section III-D, the
energy of the residual vectors should decrease substantially
as the number of iterations increases. If significant energy re-
mains in the residual vectors after the maximum number of iter-
ations, this means that the estimated support is not sufficient to

fully capture the structure in the input signal. A second possible
strategy for detecting model violations could be cross valida-
tion. For example, 95% of the NUS samples could be used for
support estimation and recovery, and the remaining 5% of the
NUS samples could be checked against the reconstructed esti-
mates. A close match suggests that the information bandwidth
is well captured in the estimated support.
In cases where small model violations are detected, CS theory

guarantees that the reconstruction on the estimated support will
be relatively accurate, although the small signal components
away from this support will of course not be reconstructed. In
cases where substantial model violations are detected, recon-
struction on the estimated support will not be accurate. There
is research into additional analog (preprocessing) and digital
(postprocessing) safeguards that could be added to our system
to protect against such situations. If the model is violated too
frequently, then the NUS is simply not the correct device for the
task.
2) Computation: Because our system is designed to have

a high EIBW, the calculations described in Sections III-C to
III-D can be expensive. To quantify these costs, suppose we
solve the reprojection problem by applying conjugate gradients
(CG) to the normal equations. In stationary signal environments,
one could alternatively employ a pseudoinverse to solve the re-
projection problem, and in some problems—especially when
the spectrum is very sparse—this could be faster than CG. The
downside is that computing the pseudoinverse is expensive, and
it must be recomputed anytime the spectral occupancy changes.
The cost of solving the reprojection problem by applying CG

to the normal equations is dominated by the FFTs, each of which
requires flops. Two FFTs are required per CG it-
eration, and one each for initialization and finalization. Because
the windows overlap by 50%, reconstruction occurs at a rate of

samples per window. Therefore, the throughput required
to perform real-time reprojection is

where is the number of CG iterations and is the recon-
structed sample rate. Although we omit the details here, in some
problems where the EIBW is less than half of the device Nyquist
rate we can envision using digital downconversion to recon-
struct at a rate equal to just twice the EIBW. When we are
interested in the 800 MHz–2 GHz band, for example, it is pos-
sible to reconstruct at a rate of just Gs/s.3 Taking this
number as an example, with
we estimate that real-time reconstruction would require
Tflops/s. Because is super-linear in the window size , the
required throughput could be reduced slightly by decreasing ,
but this would diminish the accuracy of the reconstructed signal.
Regardless, no single processor achieves performance in this
range; parallelism must certainly be exploited.
Because reprojection is an elemental computational problem

that would appear in many conceivable reconstruction algo-

3This would require using a device Nyquist rate of 4.8 Gs/s, which is part of
our future specification for the system. In addition, we note that a system using
downconversion would more realistically output complex-valued samples at 1.2
Gs/s rather than real-valued samples at 2.4 Gs/s, although the cost is the same.
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Fig. 13. Example GSM test spectra with 20 MHz clutter (left) and 100 MHz clutter (right). Spectra are plotted from 700 MHz–2.1 GHz. The GSM signal is
located at 1.595 GHz and is indicated with a green marker.

rithms, we have focused our discussion more on this topic than
that of support identification. However, we can alsomention that
for our support identification algorithm, the bulk of the effort is
consumed by the reprojections, and about 14 of these are per-
formed on each window in a typical run.We do not envision this
support identification algorithm being applied to every single
window but rather being repeated every so often on ensembles
of windows. To choose some example numbers (which match
those in Section IV), we estimate the cost of applying this algo-
rithm on an ensemble of windows of length
to be approximately 71 Gflops. Once the spectral occupancy has
been estimated, of course, the same support can be used for re-
projecting multiple windows of NUS samples. The frequency
with which the support must be recomputed will depend on the
stationarity of the signal environment.

IV. TESTING AND VALIDATION

A. Experimental Setup

In order to test our complete NUS architecture in a represen-
tative environment, we conducted a series of experiments using
realistic GSM data. To be clear, we do not intend for GSM to
be the only possible application of the NUS architecture; our
choice to demonstrate our system using GSM signals was mo-
tivated by their complexity and by the widespread familiarity
with the standard. In the experiments that follow, all signals
were generated by an arbitrary waveform generator (AWG) and
a vector signal generator (VSG).
For each experiment, we construct a 270.833 kb/s GSM

signal that has a bandwidth of (at ) and is
located at a center frequency of 1.595 GHz. The GSM signal
power is scaled between and . To the
scaled GSM signal, we add various levels of “clutter” con-
sisting of narrowband RF signals having random amplitudes
and centered at random frequencies between 800 MHz and
2 GHz. Clutter signals with bandwidths of 20, 50, or 100 MHz
are used, and two different cases were generated for each band-
width. The clutter is used to increase the information bandwidth
of the signal, even though the clutter itself is not of interest.

Fig. 13 shows example signals, including the GSM signal and
the clutter. It is important to note that our measure of the clutter
bandwidth includes spectral “tails” down to (mea-
sured after windowing); as the experiments illustrate, however,
it is possible to reconstruct the signal with high accuracy while
omitting these tails and thus requiring less overall bandwidth.
After measurement, the NUS data are arranged into blocks of

size (each corresponding to Nyquist
rate samples) and run through the spectral occupancy estima-
tion algorithm (Section III-D) using overlapping win-
dows (these span a total of Nyquist-rate samples). As
a means of cross validation, the support estimation procedure is
repeated 10 times (each on a fresh set of overlapping
windows). A frequency bin is included in the final support esti-
mate if it appears in at least 2 out of the 10 preliminary estimates.
With the estimated support, we reproject the NUS data on

each window to recover an estimate of the Nyquist-rate signal
samples. The windowed samples are then recombined as de-
scribed in Section III-A. These estimated Nyquist-rate samples
are then passed through aGSMdecoder (that has a priori knowl-
edge of the center frequency of 1.595 GHz) to measure the BER.
Note that input powers in the range of to yield
measurable BER. Above the BER drops to a rate that
makes collecting and processing an adequate number of sam-
ples difficult. Very low power inputs yield high BERs and make
synchronization of the decoder difficult; the GSM signal will
only be present in our reprojected samples if the band around
1.595 GHz is correctly identified as part of the support, and this
becomes less likely when the input power is very low.
A simplified diagram of the NUS test setup used in the exper-

iment is shown in Fig. 14. Not shown are the controller connec-
tions, differential lines, filtering, and power supplies.
For the sake of comparison, we also sampled the test sig-

nals using an NGAS developed 5 Gs/s 8-bit Nyquist ADC that
uses the same InP technology. A description of an earlier ver-
sion of this ADC chip can be found in [12]. This ADC uses
folding-interpolating architecture, has a greater than 7 ENOB
performance, and draws 9.6 W. Because the uniform ADC au-
tomatically produces Nyquist samples, its output can be passed
directly to the GSM decoder. Testing was done using a 4.4 GHz
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Fig. 14. NUS test setup. The GSM signal is produced by the VSG, clutter is
produced by the AWG, and the NUS pattern is produced by the pattern gener-
ator. ADC data is captured via the logic analyzer and is then downloaded and
processed by the computer. Component “P” is a power splitter and “B” is a
balun.

Fig. 15. BER of the decoded GSM signal as a function of input power. Circular
markers indicate the performance of the uniform ADC for each of two randomly
generated signals (denoted (1) or (2)) at each of three levels of clutter (20, 50
and 100 MHz). Square markers indicate the performance of the NUS on the
same signals. The solid and dashed colored lines correspond to separate trials.
The dashed black line indicates a BER of , at which the dynamic range is
evaluated for generating Fig. 16.

clock and the output was subsampled by four because of equip-
ment limitations.

B. Experimental Results

Fig. 15 plots the BER as the input power of the GSM signal is
reduced. Circular markers indicate the performance of the uni-
form ADC for each of two randomly generated environments
(distinguished by solid and dashed lines) at each of three levels
of clutter (distinguished by color). Square markers indicate the
performance of the NUS on the same signals. With the uniform
ADC at a given BER (e.g., , as indicated by the dashed hor-
izontal line), we see relatively little variation in dynamic range
across the various signals. That is, the performance of the uni-
form ADC does not depend on the information bandwidth of the

Fig. 16. Dynamic range of the uniform ADC and the NUS as a function of the
information bandwidth. The information bandwidth plotted for the NUS curve
indicates the total amount of bandwidth identified by the spectral occupancy
estimation algorithm. For the signal with 100 MHz of clutter, it is possible to
achieve high dynamic range while identifying less than 80 MHz of occupied
bandwidth; this is because only the small tails of the clutter signal are omitted.

Fig. 17. Comparison of the SINAD and SFDR versus frequency of the Nyquist
ADC and the NUS in uniform sampling mode.

input signal. With the NUS, in contrast, for signals with higher
levels of information bandwidth (more clutter), we do see a de-
crease in the dynamic range. This is to be expected, since the
difficulty of accurately estimating the spectral occupancy in-
creases, and the accuracy of the reprojected signal will degrade
slightly.
Fig. 16 captures this trend more clearly by plotting the dy-

namic range of the two systems as a function of the information
bandwidth. For this graph, dynamic range is defined as the min-
imum input power (dBFS) that yields a BER of ; the dis-
played values are obtained by taking a “cross section” of the plot
in Fig. 15 across the dashed horizontal line at the BER of .
For all levels of the information bandwidth, the uniform ADC
has a higher dynamic range, but this is not surprising because
the uniform ADC collects more samples in total (approximately

more than the NUS in this case).
As a separate experiment, we operate our NUS architecture

in a 300 MHz uniform sampling mode: samples are not spaced
according to the PRBS but rather occur in equispaced intervals.
This allows the system to be treated like a low-rate ADC and
characterized without the need for reconstruction. Fig. 17 com-
pares the SINAD and SFDR (as a function of input frequency)
of the Nyquist ADC and the NUS. The difference in sampling
rates between the ADC and the NUS is not a problem since it
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Fig. 18. BER of the decoded GSM signal as a function of input power. Cir-
cular markers indicate the performance of the uniform ADC for a single GSM
signal (red, solid) and amulti-GSM signal (blue, dashed) with 20MHz of clutter.
Square markers indicate the performance of NUS on the same signals.

does not affect the measurements, only the amount of folding
that occurs. The plots show the NUS has a 10 dB advantage in
both SINAD and SFDR while consuming about half the power.
The NUS SINAD advantage partially offsets the noise penalty
of undersampling.
The NUS SFDR advantage is a result of the lower average

sampling rate, which allows for more settling time in the
sample-and-hold. However, this performance advantage is not
evident in the single-carrier GSM testing described above.
An example in which the SFDR advantage is important is the
case of a signal with multiple active GSM channels that, when
passed through the nonlinear samplers, will produce inter-mod-
ulation products that fall directly on adjacent channels. A
particularly stressing case is when there are three channels,
equally spaced in frequency, with two channels having higher
power than the third test channel. Thus, we have repeated the
GSM BER experiments with multiple GSM channels active
simultaneously; the results for the uniform ADC and for the
(nonuniform) NUS are shown in Fig. 18 with 20 MHz of
clutter. For the multi-GSM signal, we see that the Nyquist ADC
dynamic range reduces by approximately 3 dB, while the NUS
dynamic range is unchanged.
This phenomenon is also illustrated by the spectra in Fig. 19,

in which GSM signals in channels 2 and 3 produce inter-mod-
ulation products that appear in channels 1 and 4. The ampli-
tudes of the GSM signals in channels 2 and 3 were skewed to
produce a quiet test channel 1 (not active in the plot), so that
the measurements would not be limited by the signal generator.
The black line shows the signal generator output measured on a
spectrum analyzer. The blue line shows the reconstructed spec-
trum from the NUS using an oracle support estimate spanning
the four channels. Notice that the NUS is faithfully reproducing
the signal generator output. The red line shows the spectrum
from the Nyquist ADC, and here the ADC produces inter-mod-
ulation products in channels 1 and 4 that are larger than the
signal generator distortion and will affect the dynamic range in

Fig. 19. Reconstructed spectrum of a multi-GSM signal from the NUS (blue,
dash–dot) and Nyquist ADC (red, dashed) as compared to the original signal
generator output (black, solid).

the test channel. In this case the NUS has a 3–5 dB advantage
over the Nyquist ADC. This example was chosen to highlight
the SFDR advantage of the NUS and may not be representative
of a power controlled GSM spectrum. However, GSM is not the
only possible application for the NUS and many scenarios de-
mand a wide dynamic range.

V. CONCLUSION

In summary, we have presented a wide bandwidth receiver
system based on nonuniform sampling. A custom InP sampler
front-end extends the instantaneous bandwidth of a commercial
ADC (14 bits, 400 Ms/s max) to 2.4 GHz. The system perfor-
mance was verified with a GSM signal embedded in RF envi-
ronments of varying sparsity levels. As a proof-of-concept the
entire RF spectrum was reconstructed prior to using standard
digital signal processing techniques to isolate and decode the
GSM signal. While the NUS can be similar in function to an
ADC, we emphasize that it is not a drop-in replacement for
an ADC. Rather, it is a powerful tool in the signal processing
toolkit that is useful when the signal is supported on a small
(unknown) bandwidth inside a large frequency range. Our ex-
perimental results show that the hardware and algorithms are
performing as expected and that the custom S/H is not a bottle-
neck of the system. Thus, by using a faster off-the-shelf ADC,
the NUS could be scaled to even higher bandwidths.
We have taken care to outline a computational framework for

recovering the Nyquist-rate signal from the NUS data and to
characterize the computational complexity of this procedure. In
short, even an optimized reconstruction algorithm can present a
significant computational burden, if only due to the extremely
high number of Nyquist-rate samples that must be computed.
Do we believe that real-time reconstruction is possible? We
have conducted a variety of tests to demonstrate the feasibility
of using graphics processing units (GPUs) to accelerate the
key computations; for example, we achieved 93% linearity on
a 6-GPU implementation of our reprojection algorithm. While
a real-time system would be expensive (and would certainly
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require more than 6 GPUs), we are optimistic that it could be
built. We reiterate that any digital processing on billions of sam-
ples per second is guaranteed to be expensive. Our reprojection
estimates in Section III-E2 involve only a few tens of FFTs
per data window; the complexity is really dominated by the
sheer number of Nyquist-rate samples that must be computed.
We also stress that for remote sensing and other applications
that do not require information extraction at the sensor, a NUS
system allows the amount of data that must be transmitted to be
greatly reduced compared to a conventional ADC. In settings
such as these, reconstruction can be performed downstream
where power and computation may be less of a constraint.
We do believe that further reductions to the computational

burden of reconstruction may be possible. For example, in set-
tings where only a portion of the spectrum changes at a time,
our support identification algorithm could be modified to use a
“warm start,” and this would reduce the required number of iter-
ations. The remaining limitation of our system is the assumption
of sparsity. The underlying issue is that the signal information
rate cannot exceed the sampling rate, and spectral sparsity is a
convenient proxy for the information rate. For specific applica-
tions that permit a tighter signal model (e.g., involving a mani-
fold [4] or a union-of-subspaces [3]) it may be possible to devise
improved recovery algorithms that have a more relaxed sparsity
assumption; we leave the application of these ideas to the NUS
for future work.
Finally, although we have focused our study on the recon-

struction problem, it is also worth emphasizing that certain
other questions can be answered with very little processing of
the NUS samples. We give one example that is relevant to the
Analog-to-Information program. Suppose we receive a chirp
signal

over some time interval, where denotes the known starting
frequency, denotes the known chirp rate, denotes the com-
plex amplitude, and denotes the unknown time-of-arrival. We
can “de-chirp” this signal over this interval, computing

where is a complex amplitude. The signal is merely a
complex sinusoid, and from a small number of NUS samples it
is quite simple [16] to determine its frequency and therefore
deduce the time-of-arrival of . (The computational cost to
do this is essentially just one FFT.) Since is defined just via
point-wise multiplication of , it is straightforward to trans-
form NUS samples of into NUS samples of . There-
fore, this example provides one alternative application in which
processing of NUS samples could more easily be performed at
the sensor. In preliminary experiments, we have confirmed that
such chirp times-of-arrival can indeed be estimated from real
NUS data.
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