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Abstract

In this work, a CMOS-SiPh optical transmitter based on
carrier-injection ring modulators is presented. It features a
novel low-power switched-capacitor-based pre-emphasis that
effectively compensates the modulator bandwidth limitation. A
wavelength stabilization technique via direct measurement of
ring temperature using a monolithic PTAT sensor is also
presented. The optical transmitter achieves energy efficiency
of 3421J/bit at 10Gb/s and the wavelength stabilization circuit
consumes 0.29mW.
Keywords: CMOS, transmitter, silicon photonics, micro-ring,
resonator, pre-emphasis, thermal tuning

Introduction

Electro-optic modulators (EOM) that are CMOS-compatible,
compact and low power are essential elements in realization of
chip-to-chip optical signaling. Carrier injection micro-ring
modulators (MRM) are one of the promising candidates [1],
[2]. Compared with carrier depletion MRM, they can operate
with higher extinction ratio and with CMOS-compatible drive
voltages. However, the speed of carrier-injection rings is
limited to slow carrier dynamics and necessitates pre-emphasis
to compensate their nonlinear transient behavior. Both types of
MRMs are also susceptible to temperature variations and need
wavelength stabilization loops. In this paper we present a
hybrid-integrated CMOS-SiPh transmitter that tackles these
challenges. A novel low-power switched-capacitor-based (SC)
pre-emphasis technique that effectively compensates the
modulator bandwidth limitation is proposed. A feed-forward
bias-based wavelength stabilization technique via direct
measurement of ring temperature using a monolithic PTAT
temperature sensor is also presented.

Principles of Operation
Carrier-injection MRMs are inherently slow and limited by
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Fig. 1 Top-level block diagram of the transmitter.

recombination lifetime of carriers in the intrinsic region of the
p-i-n junction (Fig. 1). Nonlinear pre-emphasis has proven to

978-1-5090-0635-9/16/$31.00 ©2016 IEEE

be an effective way of reducing carrier dynamic rise-time and
fall-time [1], [2]. By increasing the pre-emphasis voltage, rise-
time/fall-time is shortened and higher data-rate is achievable.
Prior pre-emphasis techniques relied on stacked output drivers
that are highly power-inefficient and have a maximum pre-
emphasis voltage drive of 2xVDDL, where VDDL is the thin-
oxide transistors’ voltage. In this work, we use a low-power
SC-based pre-emphasis technique that can boost the output
voltage to 4xVDDL. A top-level block diagram of the
transmitter with proposed SC-based pre-emphasis technique is
shown in Fig. 1. The driver consists of three main elements, a
conventional voltage driver and two pre-emphasis blocks for
rising and falling data edges. There are two voltage levels
required for operation of this scheme, VDDL=1V, set by the
standard thin-oxide transistors’ voltage and VDDH=2V. The
conventional voltage driver provides a steady state voltage to
keep the junction in forward bias when needed. The two pre-
emphasis blocks work by first accumulating charge on C; and
C, up to VDDH. Subsequently, these capacitors are switched
so that for the rising-edge pre-emphasis the output is at
2xVDDH and for falling-edge pre-emphasis the output is at -
VDDH. The charge on these capacitors is used as pre-emphasis
to inject and extract charge from the intrinsic region of the
junction.
Implementation and Measurements

Fig. 2 shows the schematic circuit details of the SC-based

pre-emphasis technique. A 2V pulsed-cascode stage, similar to
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Fig. 2 Schematic circuit details of the proposed MRM driver with
switched-capacitor-based pre-emphasis.

[1], is used to charge capacitors C; and C,. Tunable delays are
used to adjust the charge time and therefore strength of the pre-
emphasis. A voltage driver with digitally adjustable pull-up
and pull-down strengths is incorporated to maintain the
junction in forward bias region and in off region according to
the data. Fig. 3 shows optical measurement results of the
transmitter. The static transmission of the MRM shows a
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Fig. 3 Measured characteristics of the MRM and output optical eye
diagram of the optical transmitter with and without pre-emphasis.

quality factor (Q) of ~6000 and free spectral range (FSR) of
Snm. The measured optical frequency response of the MRM in
forward-bias shows a -3dB bandwidth of about 900MHz.
When a 10Gb/s, PRBS 27-1 data stream is transmitted the
output optical eye is completely closed without pre-emphasis.
Enabling pre-emphasis opens the eye to have 7dB extinction
ratio. The transmitter consumes 3.42mW resulting in per-bit
energy of 3421J/b.

Another challenge for robust operation of MRMs is their
sensitivity to temperature fluctuations. Previously reported
wavelength stabilization techniques, such as output optical
power feedback using bias voltage [1] or heater [3] require
extra optical power on the silicon-photonic chips and have
excessive power overhead. In this work, we propose
wavelength stabilization by direct measurement of temperature
through a monolithic distributed PTAT sensor. Fig. 4 shows
the schematic block diagram of the feed-forward bias-based
wavelength stabilization technique and the SiPh MRM with
on-chip PTAT temperature sensor. The monolithic PTAT
temperature sensor, used for directly measuring the
temperature of the ring, is described in [4]. In [4], the PTAT
temperature sensor operation was demonstrated in a carrier-
depletion MRM with heater-based wavelength stabilization
and without using a CMOS chip. In this work, the PTAT sensor
works by measuring the voltage difference between two diodes
with different current densities. The PTAT voltage is then
applied to an on-chip programmable gain amplifier (PGA)
implemented in the CMOS chip. This PGA sets the bias
voltage of the MRM. As calculated in Fig. 4, a gain of 5-10
(depending on Premp and variation of currents) cancels the
temperature dependency of MRM’s notch wavelength. The
PTAT sensor currents, I; and I, are provided by the CMOS
chip using a current bandgap circuit. Measurements verify that
these currents vary less than 5% in a range of 25-150°C. Note
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The condition for effective operation
of the feed-forward wavelength
stabilization is:
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Fig. 4 Schematic of the feed-forward bias-based wavelength
stabilization technique. Measured MRM resonance versus bias.
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range for the gain of programmable
gain amplifier (PGA):
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that process and voltage variation can be compensated by
adjusting gain of the programmable gain amplifier (PGA). Fig.
5 shows measured operation of the feed-forward bias-based
wavelength stabilization technique. First, the temperature
dependency of the MRM’s resonance wavelength is measured
to be about 0.1 1nm/K. The linear operation of the PTAT sensor
is independently verified from 25°C to 150°C. Next, the
optimal PGA gain is found to be 8.2 to make the notch
wavelength temperature-independent. The maximum tuning
power is 290uW for a resonance wavelength range of 0.4nm.
In order to cover the complete FSR, this technique can be used
as a fine-tuning in combination with heater-based thermal
control as coarse-tuning [5].
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Fig. 6 CMOS and SiPh chip micrographs.

TABLE I
TRANSMITTER PERFORMANCE SUMMARY

Electronics technology 65nm CMOS

TX data-rate 10Gb/s

Extinction ratio 7dB

Tuning power consumption 0.29mW

Active area 0.15mm?

TX energy/bit 3421J/b
Conclusion

The optical transmitter CMOS chip is fabricated in a 65nm
bulk process and the silicon photonic device is fabricated in
OpSIS IME-5 process. The silicon photonic MRM with
integrated PTAT sensor is connected to the CMOS chip
through wirebonds as shown in Fig. 6. The optical transmitter
achieves energy efficiency of 342fJ/bit at 10Gb/s. The feed-
forward bias-based wavelength stabilization circuit consumes
0.29mW. Table 1 summarizes the system performance and
compares it to prior art.
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